首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   3篇
化学   75篇
力学   5篇
数学   12篇
物理学   9篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   10篇
  2010年   2篇
  2009年   6篇
  2008年   7篇
  2007年   9篇
  2006年   9篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1988年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
排序方式: 共有101条查询结果,搜索用时 0 毫秒
41.
In this study, the direct molecular structure implementations for calculating vibrational spectra and scaling factors, and infrared intensities at both the Hartree–Fock (HF) and density functional (B3LYP) levels of theory with 6‐31G(d), 6‐311G(d), 6‐31++G(d,p), and 6‐311++G(d,p) basis sets are presented. Also, vibrational frequencies have been investigated as dependence on the choice of method and basis set. The parameters of molecular geometry and vibrational frequencies values of 2‐aryl‐1,3,4‐oxadiazoles 5a–g in the ground state have been calculated. Theoretical determination of vibrational frequencies is quite useful both in understanding the relationship between the molecular structures and scaling factor. The data of 2‐aryl‐1,3,4‐oxadiazoles 5a–g display significant electronic properties provide the basis for future design of efficient materials having the oxadiazole core and theoretical IR studies. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   
42.
Although commercial screen-printed electrodes (SPEs) are used extensively for biosensor purposes nowadays, detailed studies on characterization are still limited. In this study, the surface of the gold-based screen-printed electrode (SPGE) was carefully modified with self-assembly-monolayer through an optimized immobilization procedure. The key physical and chemical properties with regeneration capacity of the developed biosensors were assessed by various characterization techniques. Then SPGE was used to determine its sensitivity, limit of detection (LOD) and limit of quantification (LOQ) for a toxin substance of domoic acid in seafood that has become more common and rising concern of marine wildlife and seawater pollution. LOD in phosphate buffered saline (PBS) and cell culture media were obtained as 2.93 ng mL−1 and 4.28 ng mL−1, respectively. The reduced sensitivity for antibody-based biosensors in the cell culture medium was probably due to interaction of nonspecific compounds with DA in the culture medium compared to the much less complex environment of PBS. In addition, the regeneration capacity has been found very limited due to inherent heterogeneity and low robustness. This study can be used for the main challenges with the design requirements of commercial SPE-based biosensors to provide a detailed perspective for further toxicity studies.  相似文献   
43.
The first monomers containing both phosphonate and bisphosphonate (M1) or phosphonic and bisphosphonic acid (M2) functionalities are synthesized, aiming to improve binding abilities of self-etching adhesive systems and composites: An amine having both phosphonate and bisphosphonate functionalities is prepared via Michael addition reaction between diethyl (6-aminohexyl)phosphonate and tetraethyl vinylidene bisphosphonate, its reaction with 2-isocyanatoethyl methacrylate gives M1 which is converted to M2 by selective dealkylation of the phosphonate/bisphosphonate ester groups. Their copolymerization with commercial dental monomers (bisphenol A glycidyl methacrylate, triethylene glycol dimethacrylate, and 2-hydroxyethyl methacrylate) investigated by photo-differential scanning calorimetry shows adequate photopolymerization rate and conversion. X-ray diffraction, Fourier transform infrared, and X-ray photoelectron spectroscopy analyses of M2-treated hydroxyapatite particles show formation of stable M2-calcium salts. These monomers are assessed to be not toxic according to MTT standards by in vitro cytotoxicity studies with NIH 3T3, U2OS, and Saos-2 cells. All these properties make these monomers potential candidates as biocompatible components for dental adhesives and composites. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2739–2751  相似文献   
44.
45.
In scientific computing there is a great interest in numerical simulation of fluid-structure interaction (FSI) problems. Within this work a numerical approach to simulate fluid-structure interactions between elastic structures and weakly incompressible fluids is developed. For the fluid part and the solid part the Smoothed Particle Hydrodynamics method (SPH) and the Finite Element Method (FEM) are used, respectively. To transfer the resulting reaction forces from the fluid particles onto the structure's surface two methods are implemented, investigated and compared. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
46.
Multi-fluid flows are a common problem in process and naval engineering. In this paper an incompressible Smoothed Particle Hydrodynamics (SPH) algorithm is presented, to solve multi-fluid flows with high density ratios (≤ 1000). The results of the Rayleigh-Taylor instability and the rising bubble test case are compared with the results obtained by a weakly compressible SPH algorithm with respect to the results obtained by grid-based solvers. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
47.
The molecular geometry and vibrational frequencies of 1-(thiophen-2-yl-methyl)-2-(thiophen-2-yl)-1H-benzimidazole (C(16)H(12)N(2)S(2)) in the ground state has been calculated using the Hartree-Fock (HF) and density functional method (B3LYP) with 6-31G(d) basis set. The optimized geometric bond lengths and bond angles obtained by using HF and DFT (B3LYP) show the best agreement with the experimental data. Comparison of the observed fundamental vibrational frequencies of 1-(thiophen-2-yl-methyl)-2-(thiophen-2-yl)-1H-benzimidazole (C(16)H(12)N(2)S(2)) and calculated results by density functional B3LYP and Hartree-Fock methods indicate that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems.  相似文献   
48.
Acrylates have gained importance because of their ease of conversion to high‐molecular‐weight polymers and their broad industrial use. Methyl methacrylate (MMA) is a well‐known monomer for free radical polymerization, but its α‐methyl substituent restricts the chemical modification of the monomer and therefore the properties of the resulting polymer. The presence of a heteroatom in the methyl group is known to increase the polymerizability of MMA. Methyl α‐hydroxymethylacrylate (MHMA), methyl α‐methoxymethylacrylate (MC1MA), methyl α‐acetoxymethylacrylate (MAcMA) show even better conversions to high‐molecular‐weight polymers than MMA. In contrast, the polymerization rate is known to decrease as the methyl group is replaced by ethyl in ethyl α‐hydroxymethylacrylate (EHMA) and t‐butyl in t‐butyl α‐hydroxymethylacrylate (TBHMA). In this study, quantum mechanical tools (B3LYP/6‐31G*) have been used in order to understand the mechanistic behavior of the free radical polymerization reactions of acrylates. The polymerization rates of MMA, MHMA, MC1MA, MAcMA, EHMA, TBHMA, MC1AN (α‐methoxymethyl acrylonitrile), and MC1AA (α‐methoxymethyl acrylic acid) have been evaluated and rationalized. Simple monomers such as allyl alcohol (AA) and allyl chloride (AC) have also been modeled for comparative purposes. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   
49.
The presence of organic compounds as surface contaminants on particles can provide valuable data about the particles environment, but identification can be analytically challenging. This is true particularly for compounds that have the potential for strong surface binding, such as compounds capable of multidentate attachment. Direct analysis using time‐of‐flight secondary ion mass spectrometry was evaluated for characterization of soil particles contaminated with low concentrations of two bidentate organophosphoryl compounds, diphenyl‐N,N‐di‐n‐butylcarbamoylmethylphosphine oxide and tetraphenylmethylene diphosphine dioxide. Molecular ions were formed by cationization with H+ and alkali elements Na+ and K+ that are indigenous to the particle surface chemistry. Spectra generated from a contaminated calcareous soil were dominated by K+‐containing ions, whereas spectra from a sandy loam had more abundant Na+‐species. Cation‐bound dimers were also formed which favored incorporation of K+, and a unique aluminosilicate‐phosphoryl conjugate cation was also formed when the diphosphoryl ligand was present on the surface. The phosphoryl ligands also underwent fragmentation reactions, the course of which varied depending on the cation that was bound. Minimum detectable surface concentrations were evaluated and were in the 0.04–0.2 monolayer range, depending on the compound and soil particle matrix they was bound to. The ion signature was detected on soil particle surfaces for time periods exceeding six months, suggesting that the characterization approach could be used for environmental exposure history at times well beyond initial exposure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
50.
The dependence of YBCO thin film properties on the deposition conditions was studied for different substrates. The deposition conditions were optimized for the epitaxial growth of high quality YBCO thin films of 1500 Å thickness onto single crystal (100-oriented) SrTiO3 (STO), MgO and LaAlO3 (LAO) substrates by DC Inverted Cylindrical Magnetron Sputtering (ICMS). The samples were investigated in detail by means of X-ray diffraction analysis (XRD), EDX, AFM, ρ-T, magnetic susceptibility and current-voltage (I-V) characterizations. The samples show strong diamagnetic behavior and sharp transition temperatures of 89-91 K with ΔT<0.5 K. XRD of the samples exhibited highly c-axis orientation. The full width at half maximum (FWHM) values of the rocking curves were ranging typically from 0.22 to 0.28°. The samples have smooth surfaces as shown from AFM micrographs. The surface roughness, Ra, changed between 5-7 nm. I-V characteristics were obtained from the 20 μm-wide microbridges, which were patterned by a laser writing technique. The critical current densities (Jc, 1.06×106 for LAO-based YBCO, 1.39×106 for MgO-based YBCO, 1.67×106 A/cm2 for STO based YBCO) of the microbridges were evaluated from I-V curves at 77 K.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号