全文获取类型
收费全文 | 208篇 |
免费 | 3篇 |
专业分类
化学 | 184篇 |
数学 | 3篇 |
物理学 | 24篇 |
出版年
2023年 | 2篇 |
2022年 | 2篇 |
2021年 | 4篇 |
2020年 | 7篇 |
2019年 | 6篇 |
2018年 | 2篇 |
2017年 | 2篇 |
2016年 | 1篇 |
2015年 | 3篇 |
2014年 | 4篇 |
2013年 | 7篇 |
2012年 | 20篇 |
2011年 | 23篇 |
2010年 | 8篇 |
2009年 | 5篇 |
2008年 | 11篇 |
2007年 | 17篇 |
2006年 | 21篇 |
2005年 | 18篇 |
2004年 | 9篇 |
2003年 | 8篇 |
2002年 | 7篇 |
2001年 | 2篇 |
1999年 | 6篇 |
1998年 | 1篇 |
1996年 | 1篇 |
1995年 | 2篇 |
1993年 | 1篇 |
1992年 | 3篇 |
1990年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1971年 | 1篇 |
1938年 | 1篇 |
排序方式: 共有211条查询结果,搜索用时 15 毫秒
101.
Fagerquist CK Neese RA Hellerstein MK 《Journal of the American Society for Mass Spectrometry》1999,10(5):430-439
We have analyzed the isotopomer abundance ratios of an equimolar mixture of nine fatty acid methyl esters (decanoate, undecanoate, laurate, tridecanoate, myristate, pentadecanoate, palmitate, heptadecanoate, and stearate) by selected-ion monitoring gas chromatography/electron impact/mass spectrometry (GC/EI/MS). The abundance of the second lowest m/z isotopomer (IM1) increased disproportionately compared with the abundance of the lowest m/z isotopomer (IM0) as a function of: (1) increasing sample size; (2) decreasing repeller voltage; and (3) decreasing alkyl chain length. We also compared the abundance of the third lowest m/z isotopomer (IM2) and the abundance of the second lowest m/z isotopomer (IM1) of methyl palmitate and [4,4-2H2]methyl palmitate. We observed that the IM2/IM1 for methyl palmitate was significantly lower than IM2/IM1 for [4,4-2H2]methyl palmitate. From these results, as well as a consideration of basic principles of ion chemistry and ion physics, we conclude that gas-phase chemistry, specifically proton (or deuteron) transfer from fragment ions to molecules, is a major contributor to the sample size dependence observed in mass isotopomer abundance measurements of fatty acid methyl esters ionized by EI. Our results and analysis do not support hydrogen abstraction as the reaction mechanism. In addition, we calculate that rearranged molecular ions are unlikely to contribute significantly to intermolecular proton transfer because of their relatively brief lifetime. We also discuss alternative analytical techniques which might improve the precision and accuracy of isotopomer measurements by reducing molecular ion fragmentation. 相似文献
102.
M.W. Guidry R.E. Neese C.R. Bingham L.L. Riedinger J.A. Vrba I.Y. Lee N.R. Johnson G.R. Satchler P.A. Butler R. Donangelo J.O. Rasmussen D.L. Hillis H.H. Kluge 《Nuclear Physics A》1984,430(2):485-524
Theoretical and experimental methods for studying heavy-ion inelastic scattering from deformed nuclei are described. The theoretical methods involve classical-limit approximations, while particle- γ-spectroseopy techniques are employed experimentally. With these approaches, heavy-ion excitation in the Coulomb-nuclear interference region acquires a transparent interpretation, despite the apparent complexity of the multistep excitation processes involved. The examples discussed provide a good illustration of the relationship between classical and quantum physics. The sensitivity of the inelastic scattering to details of the surface ion-ion potential due to radial and angular localization is exploited to provide a method of determining the equipotential contours in a direct manner which bypasses particular model-dependent parametrizations. The method is used to construct ion-ion potentials from inelastic scattering data for the systems 40Ar + 160Gd, 156Gd, 162Dy, 164Dy, and180Hf. The contribution of adiabatic giant resonance polarization to this potential is discussed. The relation between the deformed ion-ion potential and nuclear shapes is illustrated by comparing the experimental potentials to deformed double-folding and deformed proximity-potential calculations. 相似文献
103.
The synthesis, structural characterization, and electronic properties of a new series of high-spin six-coordinate dihalide mononuclear MnII complexes [Mn(tpa)X2] (tpa=tris-2-picolylamine; X=I (1), Br (2), and Cl (3)) are reported. The analysis of the crystallographic data shows that in all investigated complexes the manganese ion lies in the center of a distorted octahedron with a cis configuration of the halides imposed by the tpa ligand. By a multifrequency high-field electron paramagnetic resonance investigation (95-285 GHz), the electronic properties of 1-3 were determined (DI=-0.600, DBr=-0.360, DCl=+0.115 cm-1), revealing the important effect of (i) the nature of the halide and (ii) the configuration (cis/trans) of the two halides on the magnitude of D. The spin Hamiltonian parameters obtained by density functional theory calculations initiated from the crystal structure of 1-3 are in reasonable agreement with the experimental values. The absolute value of D is consistently overestimated, but the sign and the trend over the chemical series is well reproduced. Theoretical models (cis- and trans-[Mn(NH3)4X2], X=I, Br, Cl and F) have been used to investigate the different contributions to D and also to understand the origin of the experimentally observed changes in D within the series reported here. This study reveals that the spin-spin coupling contributions to the D tensor are non-negligible for the lighter halides (F, Cl) but become insignificant for the heavier halides (I, Br). The four different types of excitations involved in the spin-orbit coupling (SOC) part of the D tensor contribute with comparable magnitudes and opposing signs. The general trend observed for halide MnII complexes (DI>DBr>DCl) can be explained by the fact that the halide SOC dominates the D value in these systems with a major contribution arising from interference between metal- and halide-SOC contributions, which are proportional to the product of the SOC constants of Mn and X. 相似文献
104.
105.
106.
Electrocatalytic CO2 reduction is a possible solution to the increasing CO2 concentration in the earth’s atmosphere, because it enables storage of energy while using the harmful CO2 feedstock as a starting material. Notably, iron(ii) tetraphenylporphyrin, [FeII(TPP)]0 (TPP2− = tetraphenylporphyrin tetra-anion diradical), and its derivatives have been established as one of the most promising families of homogeneous catalysts for CO2 reduction into CO. Our earlier work has demonstrated that [Fe(TPP)]2−, a catalytically active species, is best described as an Fe(ii) center antiferromagnetically coupled with a TPP4− diradical. In fact, [Fe(TPP)]2− represents a prototypical example of a diverse array of highly efficient molecular catalysts that feature non-innocent ligands. To obtain valuable insights for future catalyst design, their outstanding catalytic performance warrants an investigation aimed at elucidating the role played by the ligand non-innocence in the reaction. To this end, the reactivity of [Fe(TPP)]2− was first investigated in detail by using density functional theory calculations, and the theoretical results were then validated by reproducing available experimental kinetic and thermodynamic data. Further in-depth analyses pinpointed the electronic-structure feature of the non-innocent TPP ligand that is responsible for the high efficiency of the reaction. Finally, we analyzed the electronic-structure evolution found for the reactions catalyzed by ten related representative non-innocent systems. Our results revealed that for the reactions under consideration, the reducing equivalents are stored on the non-innocent ligand, while CO2 functionalization takes place at the metal center. Therefore, all of the transformations invariably entail two synchronized electron-transfer events: (1) a metal-to-CO2 transfer and (2) a ligand-to-metal electron transfer. The former is affected by σ-donation from the metal dz2 orbital to the CO2 orbital, and the latter is facilitated by orbital coupling between the ligand and the metal center. Our results suggested that ligand non-innocence plays a fundamental role in stabilizing highly active intermediates while realizing high product selectivity for CO2 reduction and that the metal–ligand cooperativity is essential to the high reaction kinetics. On the basis of these findings, we proposed fundamental requirements for design of catalysts with non-innocent ligands.This computational study elucidates the role played by ligand non-innocence in CO2 reduction on the basis of analyses of electronic structure evolution of highly efficient iron-tetraphenylporphyrin and ten other transition metal complexes, all bearing non-innocent ligands. 相似文献
107.
Romain Berraud-Pache Eduardo Santamaría-Aranda Bernardo de Souza Giovanni Bistoni Frank Neese Diego Sampedro Rbert Izsk 《Chemical science》2021,12(8):2916
Many studies have recently explored a new class of reversible photoswitching compounds named Donor–Acceptor Stenhouse Adducts (DASAs). Upon light irradiation, these systems evolve from a coloured open-chain to a colourless closed-ring form, while the thermal back-reaction occurs at room temperature. In order to fulfill the requirements for different applications, new molecules with specific properties need to be designed. For instance, shifting the activation wavelength towards the red part of the visible spectrum is of relevance to biological applications. By using accurate computational calculations, we have designed new DASAs and predicted some of their photophysical properties. Starting from well-studied donor and acceptor parts, we have shown that small chemical modifications can lead to substantial changes in both photophysical and photoswitching properties of the resulting DASAs. Furthermore, we have also analysed how these substitutions impact the electronic structure of the systems. Finally, some pertinent candidates have been successfully synthesized and their photoswitching properties have been characterized experimentally.New photoswitch Donor–Acceptor Stenhouse Adducts (DASAs) have been synthesized thanks to accurate computational chemistry predictions. They possess good properties, notably red light activation. 相似文献
108.
Natural photosynthesis relies on light harvesting and excitation energy transfer by specialized pigment–protein complexes. Their structure and the electronic properties of the embedded chromophores define the mechanisms of energy transfer. An important example of a pigment–protein complex is CP47, one of the integral antennae of the oxygen-evolving photosystem II (PSII) that is responsible for efficient excitation energy transfer to the PSII reaction center. The charge-transfer excitation induced among coupled reaction center chromophores resolves into charge separation that initiates the electron transfer cascade driving oxygenic photosynthesis. Mapping the distribution of site energies among the 16 chlorophyll molecules of CP47 is essential for understanding excitation energy transfer and overall antenna function. In this work, we demonstrate a multiscale quantum mechanics/molecular mechanics (QM/MM) approach utilizing full time-dependent density functional theory with modern range-separated functionals to compute for the first time the excitation energies of all CP47 chlorophylls in a complete membrane-embedded cyanobacterial PSII dimer. The results quantify the electrostatic effect of the protein on the site energies of CP47 chlorophylls, providing a high-level quantum chemical excitation profile of CP47 within a complete computational model of “near-native” cyanobacterial PSII. The ranking of site energies and the identity of the most red-shifted chlorophylls (B3, followed by B1) differ from previous hypotheses in the literature and provide an alternative basis for evaluating past approaches and semiempirically fitted sets. Given that a lot of experimental studies on CP47 and other light-harvesting complexes utilize extracted samples, we employ molecular dynamics simulations of isolated CP47 to identify which parts of the polypeptide are most destabilized and which pigments are most perturbed when the antenna complex is extracted from PSII. We demonstrate that large parts of the isolated complex rapidly refold to non-native conformations and that certain pigments (such as chlorophyll B1 and β-carotene h1) are so destabilized that they are probably lost upon extraction of CP47 from PSII. The results suggest that the properties of isolated CP47 are not representative of the native complexed antenna. The insights obtained from CP47 are generalizable, with important implications for the information content of experimental studies on biological light-harvesting antenna systems.Advanced QM/MM simulations explore the excited states of a photosynthetic light-harvesting antenna in its physiologically complexed state and model the consequences of extraction on conformational and electronic properties. 相似文献
109.
Paine TK Weyhermüller T Slep LD Neese F Bill E Bothe E Wieghardt K Chaudhuri P 《Inorganic chemistry》2004,43(23):7324-7338
Ligating properties of four potentially tridentate bisphenol ligands containing [O, X, O] donor atoms (X = S 1, Se 2, P 3, or P=O 4) toward the vanadium ions in +IV or +V oxidation states have been studied. Each ligand with different heterodonor atoms yields as expected nonoxovanadium(IV) complexes, V(IV)L(2), whose structures have been determined by X-ray diffraction methods as having six-coordinate V(IV), VO(4)X(2), core. Compounds 1-4 have also been studied with electrochemical methods, variable-temperature (2-295 K) magnetic susceptibility measurements, X-band electron paramagnetic resonance (EPR) (2-60 K) spectroscopy, and magnetic circular dichroism (MCD) (5 K) measurements. Electrochemical results suggest metal-centered oxidations to V(V) (i.e., no formation of phenoxyl radicals from the coordinated phenolates). A combination of density functional theory calculations and experimental EPR investigations indicates a dramatic effect of the heteroatoms on the electronic structure of 1-4 with consequent reordering of the energy levels; 1 and 3 possess a trigonal ground state (d(z)()(2))(1), but 4 with the phosphoryl oxygen as the heterodonor atom in contrast exhibits a tetragonal ground state, (d(xy)())(1). On the basis of the intense electronic transitions in absorption spectra, all electronic transitions observed for 4 have been assigned to ligand-to-metal charge-transfer transitions, which have been confirmed by preliminary resonance Raman measurements and C/D ratios obtained from low-temperature MCD spectroscopy. Moreover, diamagnetic complexes 5 and 6 containing mononuclear and dinuclear oxovanadium(V) units have also been synthesized and structurally and spectroscopically ((51)V NMR) characterized. 相似文献
110.
A production level implementation of the high-spin open-shell (spin unrestricted) single reference coupled pair, quadratic configuration interaction and coupled cluster methods with up to doubly excited determinants in the framework of the local pair natural orbital (LPNO) concept is reported. This work is an extension of the closed-shell LPNO methods developed earlier [F. Neese, F. Wennmohs, and A. Hansen, J. Chem. Phys. 130, 114108 (2009); F. Neese, A. Hansen, and D. G. Liakos, J. Chem. Phys. 131, 064103 (2009)]. The internal space is spanned by localized orbitals, while the external space for each electron pair is represented by a truncated PNO expansion. The laborious integral transformation associated with the large number of PNOs becomes feasible through the extensive use of density fitting (resolution of the identity (RI)) techniques. Technical complications arising for the open-shell case and the use of quasi-restricted orbitals for the construction of the reference determinant are discussed in detail. As in the closed-shell case, only three cutoff parameters control the average number of PNOs per electron pair, the size of the significant pair list, and the number of contributing auxiliary basis functions per PNO. The chosen threshold default values ensure robustness and the results of the parent canonical methods are reproduced to high accuracy. Comprehensive numerical tests on absolute and relative energies as well as timings consistently show that the outstanding performance of the LPNO methods carries over to the open-shell case with minor modifications. Finally, hyperfine couplings calculated with the variational LPNO-CEPA∕1 method, for which a well-defined expectation value type density exists, indicate the great potential of the LPNO approach for the efficient calculation of molecular properties. 相似文献