首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   1篇
化学   88篇
晶体学   1篇
力学   3篇
数学   5篇
物理学   19篇
  2024年   2篇
  2023年   1篇
  2022年   13篇
  2021年   5篇
  2020年   4篇
  2019年   3篇
  2018年   5篇
  2017年   5篇
  2016年   7篇
  2015年   5篇
  2014年   7篇
  2013年   17篇
  2012年   5篇
  2011年   7篇
  2010年   7篇
  2009年   3篇
  2008年   7篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
  2003年   1篇
  2002年   1篇
  1990年   1篇
  1979年   1篇
  1976年   2篇
  1975年   1篇
排序方式: 共有116条查询结果,搜索用时 46 毫秒
111.
Abstract

We recently reported the pyrolysis of stabilised ylides as a method for overall conversion of carboxylic acids to homologous acetylenic esters and terminal alkynes.1,2 This has now been applied successfully to amino acids. A wide range of alkoxycarbonyl protected amino acids have been converted to the stable crystalline ylides 1. These have been fully characterised, and upon FVP, eliminate Ph3PO to afford the protected acetylenic amino acids 2 in good yield and without significant racemisation. Subsequent reactions of these extremely versatile intermediates have been used to gain access to a wide variety of chiral amine and amino acids of great interest as potential selective enzyme inhibitors and components for modified peptide structures.  相似文献   
112.
Various aldehydes undergo smooth coupling with 5-(hydroxymethyl)-4,6,6-trimethylcyclohex-3-enol in the presence of p-TSA at ambient temperature to afford a novel series of hexahydro-8,8-dimethyl-1H-isochromen-7-ol derivatives in good yields with high selectivity. This is the first report on the synthesis of isochromen-7-ol derivatives via the Prins reaction.  相似文献   
113.
Heterocycle containing nitroaromatics were reduced by Mo(CO)6 and DBU in EtOH under microwave irradiation within 15 min. Under the same conditions, 4-fluoronitrobenzene was reduced to 4-fluoroaniline, whereas 2-chloro-1-fluoro-4-nitrobenzene afforded a mixture of 3-chloro-4-fluoroaniline and 3-chloro-4-ethoxyaniline. The extent of the competing SNAr/reduction process could be influenced by the nature of the solvent, with t-BuOH the inert solvent of choice. The latter was used as solvent for SNAr/reductions of 2-chloro-1-fluoro-4-nitrobenzene with S-nucleophiles to yield 3-chloro-4-mercaptoanilines.  相似文献   
114.
In this study, we have used ultraviolet (UV) and γ-ray induction to get a catabolite repression resistant and thermotolerant mutant with enhanced ethanol production along with optimization of sugar concentration and temperature of fermentation. Classical mutagenesis in two consecutive cycles of UV- and γ-ray-induced mutations evolved one best catabolite-resistant and thermotolerant mutant Saccharomyces cerevisiae MLD10 which showed improved ethanol yield (0.48?±?0.02 g g?1), theoretical yield (93?±?3 %), and extracellular invertase productivity (1,430?±?50 IU l?1 h?1), respectively, when fermenting 180 g sugars l?1 in molasses medium at 43 °C in 300 m3 working volume fermenter. Ethanol production was highly dependent on invertase production. Enthalpy (ΔH*) (32.27 kJ M?1) and entropy (ΔS*) (?202.88 J M?1 K?1) values at 43 °C by the mutant MLD10 were significantly lower than those of β-glucosidase production by a thermophilic mutant derivative of Thermomyces lanuginosus. These results confirmed the enhanced production of ethanol and invertase by this mutant derivative. These studies proved that mutant was significantly improved for ethanol production and was thermostable in nature. Lower fermentation time for ethanol production and maintenance of ethanol production rates (3.1 g l?1 h?1) at higher temperature (43 °C) by this mutant could decrease the overall cost of fermentation process and increase the quality of ethanol production.  相似文献   
115.
Life-threatening diseases, such as hepatitis B, pneumonia, tuberculosis, and COVID-19, are widespread due to pathogenic bacteria and viruses. Therefore, the development of highly sensitive, rapid, portable, cost-effective, and selective methods for the analysis of such microorganisms is a great challenge. Microchip electrophoresis (ME) has been widely used in recent years for the analysis of bacterial and viral pathogens in biological and environmental samples owing to its portability, simplicity, cost-effectiveness, and rapid analysis. However, microbial enrichment and purification are critical steps for accurate and sensitive analysis of pathogenic bacteria and viruses in complex matrices. Therefore, we first discussed the advances in the sample preparation technologies associated with the accurate analysis of such microorganisms, especially the on-chip microfluidic-based sample preparations such as dielectrophoresis and microfluidic membrane filtration. Thereafter, we focused on the recent advances in the lab-on-a-chip electrophoretic analysis of pathogenic bacteria and viruses in different complex matrices. As the microbial analysis is mainly based on the analysis of nucleic acid of the microorganism, the integration of nucleic acid-based amplification techniques such as polymerase chain reaction (PCR), quantitative PCR, and multiplex PCR with ME will result in an accurate and sensitive analysis of microbial pathogens. Such analyses are very important for the point-of-care diagnosis of various infectious diseases.  相似文献   
116.
For overall water-splitting systems, it is essential to establish O2-insensitive cathodes that allow cogeneration of H2 and O2. An acid-tolerant electrocatalyst is described, which employs a Mo-coating on a metal surface to achieve selective H2 evolution in the presence of O2. In operando X-ray absorption spectroscopy identified reduced Pt covered with an amorphous molybdenum oxyhydroxide hydrate with a local structural order composed of polyanionic trimeric units of molybdenum(IV). The Mo layer likely hinders O2 gas permeation, impeding contact with active Pt. Photocatalytic overall water splitting proceeded using MoOx/Pt/SrTiO3 with inhibited water formation from H2 and O2, which is the prevailing back reaction on the bare Pt/SrTiO3 photocatalyst. The Mo coating was stable in acidic media for multiple hours of overall water splitting by membraneless electrolysis and photocatalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号