首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   8篇
化学   128篇
晶体学   2篇
力学   2篇
数学   24篇
物理学   31篇
  2024年   3篇
  2023年   3篇
  2022年   9篇
  2021年   4篇
  2020年   6篇
  2019年   9篇
  2018年   8篇
  2017年   10篇
  2016年   9篇
  2015年   5篇
  2014年   9篇
  2013年   15篇
  2012年   8篇
  2011年   10篇
  2010年   5篇
  2009年   7篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   6篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1981年   4篇
  1978年   2篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1968年   1篇
  1966年   1篇
  1962年   1篇
排序方式: 共有187条查询结果,搜索用时 15 毫秒
31.
A catalyst-free green methodology for the synthesis of pharmacologically important spirooxindole derivatives has been developed by a three-component domino reaction between isatin, various amino compounds, and 1,3-dicarbonyl or 3-phenylisoxazolone compounds in ethyl l-lactate medium at room temperature. This new efficient synthetic method facilitated the formation of a wide range of biologically significant spirooxindole derivatives (including 17 new spirooxindoles) under very mild conditions. The cytotoxic activity of one of the isoxazole-fused spirooxindoles was evaluated in MDA-MB 468 breast cancer cell line. It was found that cell survivability decreases with increasing concentration of the selected compound in MDA-MB 468 breast cancer cells.  相似文献   
32.
Mineral oil microdroplets containing the model antioxidant N,N‐didodecyl‐N′,N′‐diethyl‐phenylene‐diamine (DDPD) are immobilized into a 100×100 pore‐array (ca. 10 μm individual pore diameter, 100 μm pitch) in a boron‐doped diamond electrode surface. The robust diamond surface allows pore filling, cleaning, and reuse without damage to the electrode surface. The electrode is immersed into aqueous electrolyte media, and voltammetric responses for the oxidation of DDPD are obtained. In order to further improve the current responses, 20 wt% of carbon nanofibers are co‐deposited with the oil into the pore array. Voltammetric signals are consistent with the oxidation of DDPD and the associated transfer of perchlorate anions (in aqueous 0.1 M NaClO4) or the transfer of protons (in aqueous 0.1 M HClO4). From the magnitude of the current response, the DDPD content in the mineral oil can be determined down to less than 1 wt% levels. Perhaps surprisingly, the reversible (or midpoint) potential for the DDPD oxidation in mineral oil (when immersed in 0.1 NaClO4) is shown to be concentration‐dependent and to shift to more positive potential values for more dilute DDPD in mineral oil solutions. An extraction mechanism and the formation of a separate organic product phase are proposed to explain this behavior.  相似文献   
33.
The mechanical testing of thin layers of soft materials is an important but difficult task. Spherical indentation provides a convenient method to ascertain material properties whilst minimising damage to the material by allowing testing to take place in situ. However, measurement of the viscoelastic properties of these soft materials is hindered by the absence of a convenient yet accurate model which takes into account the thickness of the material and the effects of the underlying substrate. To this end, the spherical indentation of a thin layer of viscoelastic solid material is analysed. It is assumed that the transient mechanical properties of the material can be described by the generalised standard linear solid model. This model is incorporated into the theory and then solved for the special case of a stress relaxation experiment taking into account the finite ramp time experienced in real experiments. An expression for the force as a function of the viscoelastic properties, layer thickness and indentation depth is given. The theory is then fitted to experimental data for the spherical indentation of poly(dimethyl)siloxane mixed with its curing agent to the ratios of 5:1, 10:1 and 20:1 in order to ascertain its transient shear moduli and relaxation time constants. It is shown that the theory correctly accounts for the effect of the underlying substrate and allows for the accurate measurement of the viscoelastic properties of thin layers of soft materials.  相似文献   
34.
The structural,elastic,mechanical,electronic,and optical properties of KPaO_3 and RbPaO_3 compounds are investigated from first-principles calculations by using the WIEN2 k code in the frame of local density approximation(LDA) and generalized gradient approximation(GGA).The calculated ground state quantities,such as lattice constant(α_0),ground state energy(E),bulk modulus(S),and their pressure derivative(B_p) are in reasonable agreement with the present analytical and previous theoretical results and available experimental data.Based on several elastic and mechanical parameters,the structural stability,hardness,stiffness and the brittle and ductile behaviors are discussed,which reveal that protactiniumbased oxide series of perovskites is mechanically stable and possesses weak resistance to shear deformation compared with resistance to unidirectional compression while flexible and covalent behaviors are dominated in them.The analysis of band profile through Trans-Blaha modified Becke-Johnson(TB-mBJ) potential highlights the underestimation of bandgap with traditional density functional theory(DFT) approximation.Specific contribution of electronic states is investigated by means of total and partial density of states and it can be evaluated that both compounds are(Γ-Γ) direct bandgap semiconductors.All fundamental optical properties are analyzed while attention is paid to absorption and reflection spectra to explore extensive absorptions and reflections of these compounds in high frequency regions.The present method represents an influential approach to calculating the whole set of elastic,mechanical,and opto-electronic parameters,which would conduce to the understanding of various physical phenomena and empower the device engineers to implement these materials in flexible opto-electronic applications.  相似文献   
35.
In recent years, the ability to produce nanofibrous patterned architectures by electrospinning has exposed a wide range of potential applications in biomedical and industrial fields. Directional alignment, controlled deposition, and density variation into the patterns are desirable for many applications such as tissue engineering scaffolds and micro/nano‐electronic devices. In this study, we introduce a versatile method for fabrication of various kinds of nanofibrous deposition patterns with the help of microprocessor based control system for switching collector electrodes. By controlling the concurrent activation time of two adjacent electrodes, we demonstrated that amount of fibers going into the pattern can be adjusted and alignment in electrospun fibers can be obtained. We also revealed that the deposition density of electrospun fibers in different areas of patterned architectures can be varied. This advanced technique can have a significant impact in enhancing the technology of electrospinning and can help develop new applications in health sciences and industrial sectors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
36.
Linear and nonlinear phenomena are investigated in toroidal ion temperature gradient (TITG)-driven pure drift mode. The model includes inhomogeneity in background magnetic field, ion temperature, and density. Finite Larmor radius effect is incorporated to understand the effect of low-frequency wave on ion dynamics. Electrons are assumed to follow nonthermal distribution, that is, kappa and Cairns distributions. Dispersion relation is obtained to analyse the linear behaviour of the TITG mode in the presence of non-Maxwellian electron distribution. In the nonlinear regime, exact solutions (soliton and shocks) are obtained (in dispersive and dissipative medium respectively) by using functional variable method to solve the nonlinear partial differential equation obtained for the system under consideration. Graphical illustrations are used to exhibit the characteristics of linear and nonlinear structures and their dependence on different physical parameters. It is observed that for TITG-driven pure drift mode, rarefactive solitons are formed for both thermal and nonthermal electron distributions. It is also observed that variation of electrons from standard thermal distribution affects the propagation characteristics of linear and nonlinear structures in TITG-driven modes. Results of our investigations will be helpful to understand the low-frequency waves in inhomogeneous plasmas in the presence of nonthermal electron distributions which are frequently observed by satellite missions and are also observed in laboratory plasmas.  相似文献   
37.
In this study, structural, electronic, optical and thermoelectric aspects of Zinc Sulfide (ZnS) and Zinc Telluride (ZnTe) have been explored in detail. These calculations have been done by utilizing FP-LAPW method via Density Functional Theory (DFT). In order to attain accurate band gaps, opto-electronic properties are evaluated with modified Becke Johnson potential (mBJ). From band structure plots, both ZnS and ZnTe reveals direct (Γv–ΓC) band gap semiconductors in nature with bandgap value equal to 3.5 and 2.3 eV while in Density Of States (DOS) major influence is observed due to p states of S/Te and d state of Zn. Prominent variation of optical responses such as high values of imaginary dielectric constants 𝜀1 (ω) and n (ω) refractive index suggests that ZnS and ZnTe are applicant materials for future photonics and microelectronic devices. The thermoelectric aspects were explored by Boltz Trap code to determine electrical and thermal conductivities, Seebeck coefficients, power factors and figure of merit. The figure of merits is closer to 1 while compared with p-type ZnS and ZnTe, n-type ZnS and ZnTe has good thermoelectric properties, which are attributed to low thermal conductivity of the hole and larger effective mass. The goal of this research is to investigate not only the detailed physical aspects but also to provide an overview of its future applications in optoelectronics, displays, sensors and microelectronic industry.  相似文献   
38.
Chitosan–starch blend films (thickness 0.2 mm) of different composition were prepared by casting and their mechanical properties were studied. To improve the properties of chitosan–starch films, glycerol and mustard oil of different composition were used. Chitosan–starch films, incorporated with glycerol and mustard oil, were further modified with monomer 2-hydroxyethyl methacrylate (HEMA) using gamma radiation. The modified films showed improvement in both tensile strength and elongation at break than the pure chitosan–starch films. Water uptake of the films reduced significantly than the pure chitosan–starch film. Thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) showed that the modified films experience less thermal degradation than the pure films. Scanning electron microscopy (SEM) and FTIR were used to investigate the morphology and molecular interaction of the blend film, respectively.  相似文献   
39.
We consider a smooth multiobjective optimization problem with inequality constraints. Weak Kuhn?CTucker (WKT) optimality conditions are said to hold for such problems when not all the multipliers of the objective functions are zero, while strong Kuhn?CTucker (SKT) conditions are said to hold when all the multipliers of the objective functions are positive. We introduce a new regularity condition under which (WKT) hold. Moreover, we prove that for another new regularity condition (SKT) hold at every Geoffrion-properly efficient point. We show with an example that the assumption on proper efficiency cannot be relaxed. Finally, we prove that Geoffrion-proper efficiency is not needed when the constraint set is polyhedral and the objective functions are linear.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号