全文获取类型
收费全文 | 1689篇 |
免费 | 73篇 |
国内免费 | 11篇 |
专业分类
化学 | 1173篇 |
晶体学 | 11篇 |
力学 | 53篇 |
数学 | 240篇 |
物理学 | 296篇 |
出版年
2023年 | 12篇 |
2022年 | 32篇 |
2021年 | 40篇 |
2020年 | 33篇 |
2019年 | 23篇 |
2018年 | 26篇 |
2017年 | 33篇 |
2016年 | 53篇 |
2015年 | 40篇 |
2014年 | 56篇 |
2013年 | 92篇 |
2012年 | 140篇 |
2011年 | 168篇 |
2010年 | 52篇 |
2009年 | 52篇 |
2008年 | 118篇 |
2007年 | 121篇 |
2006年 | 116篇 |
2005年 | 119篇 |
2004年 | 78篇 |
2003年 | 60篇 |
2002年 | 69篇 |
2001年 | 20篇 |
2000年 | 15篇 |
1999年 | 9篇 |
1998年 | 10篇 |
1997年 | 7篇 |
1996年 | 8篇 |
1995年 | 6篇 |
1994年 | 7篇 |
1993年 | 11篇 |
1992年 | 5篇 |
1991年 | 5篇 |
1989年 | 8篇 |
1988年 | 5篇 |
1987年 | 5篇 |
1985年 | 15篇 |
1984年 | 15篇 |
1983年 | 4篇 |
1982年 | 9篇 |
1981年 | 10篇 |
1980年 | 6篇 |
1979年 | 4篇 |
1978年 | 6篇 |
1977年 | 7篇 |
1976年 | 7篇 |
1975年 | 7篇 |
1974年 | 5篇 |
1973年 | 4篇 |
1967年 | 3篇 |
排序方式: 共有1773条查询结果,搜索用时 0 毫秒
861.
The preparation of surfaces in microfluidic devices that selectively retain proteins may be difficult to implement due to the incompatibility of derivatization methods with microdevice fabrication techniques. This review describes recently reported developments in simple and rapid methods for engineering the surface chemistries of microchannels based on construction of press-fit microdevices. These devices are fabricated by placing a glass fiber on a PDMS film and pressing the film on a silicon wafer or a microscope slide that has been derivatized with octadecyltrichlorosilane (ODS). The film adheres to the slide and forms an elliptically shaped channel around the fiber. The combination of surface wettability of a hydrophilic glass microfiber and the surrounding hydrophobic microchannel surfaces directs a narrow boundary layer of liquid next to the fiber in order to bring the sample in contact with the separation media and results in selective retention of proteins. This phenomenon may be exploited to enable microscale separation applications since there are a wide variety of fibers available with different chemistries. These may be used to rapidly fabricate microchannels that serve as stationary phases for separation at a microscale. The fundamental properties of such devices are discussed. 相似文献
862.
This work presents analytical solutions for both pressure-driven and electroosmotic flows in microchannels incorporating porous media. Solutions are based on a volume-averaged flow model using a scaling of the Navier-Stokes equations for fluid flow. The general model allows analysis of fluid flow in channels with porous regions bordering open regions and includes viscous forces, permitting consideration of porosity and zeta potential variations near channel walls. To obtain analytical solutions problems are constrained to the linearized Poisson-Boltzmann equation and a variation of Brinkman's equation [Appl. Sci. Res., Sect. A 1, 27 (1947); 1, 81 (1947)]. Cases include one continuous porous medium, two adjacent regions of different porosities, or one open channel adjacent to a porous region, and the porous material may have a different zeta potential than that of the channel walls. Solutions are described for two geometries, including flow between two parallel plates or in a cylinder. The model illustrates the relative importance of porosity and zeta potential in different regions of each channel. 相似文献
863.
The use of H2O2 and UV irradiation to remove organic ligands in a chromium(III) complex for the subsequent chromium analysis is reported. The Advanced Oxidation Process (AOP) using a 5.5-W UV lamp, H2O2 and Fe2+/Fe3+ as catalyst (photo Fenton process) was found to give complete and quantitative Cr(III) → Cr(VI) conversion and removal of ligands in chromium(III) propionate [Cr3O(O2CCH2CH3)6(H2O)3]NO3, a biomimetic chromium species, as subsequent chromium analyses by the 1,5-diphenylcarbazide method and atomic absorption revealed. The current process eliminates the need for mineralization and/or dissolution of the matrix in order to remove the organic ligand, the traditional pretreatments of a sample for metal analysis. Studies to optimize the conditions for the oxidation processes, including the use of Fe2+/Fe3+ catalyst, length of UV irradiation, H2O2 concentration, pH, power of UV lamp, and reactor size, are reported. 相似文献
864.
The effect of the guanidinium cation on the hydrogen bonding strength of water was analyzed using temperature-excursion Fourier transform infrared spectra of the OH stretching vibration in 5% H 2O/95% D 2O solutions containing a range of different guanidine-HCl and guanidine-HBr concentrations. Our findings indicate that the guanidinium cation causes the water H-bonds in solution to become more linear than those found in bulk water, and that it also inhibits the response of the H-bond network to increased temperature. Quantum chemical calculations also reveal that guanidinium affects both the charge distribution on water molecules directly H-bonded to it as well as the OH stretch frequency of H-bonds in which that water molecule is the donor. The implications of our findings to hydrophobic solvation and protein denaturation are discussed. 相似文献
865.
866.
Two quantum mechanical (QM)-cluster models are built for studying the acylation and deacylation mechanism and kinetics of Streptomyces R61 DD-peptidase with the penicillin G at atomic level detail. DD-peptidases are bacterial enzymes involved in the cross-linking of peptidoglycan to form the cell wall, necessary for bacterial survival. The cross-linking can be inhibited by antibiotic beta-lactam derivatives through acylation, preventing the acyl-enzyme complex from undergoing further deacylation. The deacylation step was predicted to be rate-limiting. Transition state and intermediate structures are found using density functional theory in this study, and thermodynamic and kinetic properties of the proposed mechanism are evaluated. The acyl-enzyme complex is found lying in a deep thermodynamic sink, and deacylation is indeed the severely rate-limiting step, leading to suicide inhibition of the peptidoglycan cross-linking. The usage of QM-cluster models is a promising technique to understand, improve, and design antibiotics to disrupt function of the Streptomyces R61 DD-peptidase. 相似文献
867.
A series of acyclic beta,gamma-unsaturated amides are shown to undergo highly regio- (>95%) and enantioselective (93-99% ee) rhodium-catalyzed hydroboration with pinacolborane (PinBH) using simple chiral monophosphite or phosphoramidite ligands in combination with Rh(nbd)2BF4. The most effective ligands identified are phosphoramidite 4, derived from BINOL and N-methylaniline, and phosphite 5c, prepared from the (4'-tert-butyl)phenyl TADDOL analogue and phenol. For example, (E)-3-hexenoic acid phenylamide ((E)-1) undergoes rhodium-catalyzed hydroboration with PinBH (0.5 mol % Rh(nbd)2BF4, 1.1 mol % BINOL-derived phosphoramidite 4, THF, 40 degrees C, 2 h) affording an intermediate boronate ester which after oxidation with basic hydrogen peroxide gives the beta-hydroxy amide, (S)-3-hydroxyhexanoic acid phenylamide ((S)-3), in good yield (80%) and high enantiomeric purity (99% ee). Isomeric disubstituted (E)- and (Z)-alkenes give nearly identical results, and a trisubstituted alkene substrate is also shown to undergo efficient hydroboration (97% ee). Moderate catalyst loading (0.5 mol %) and reaction temperatures in 25-40 degrees C range are generally effective. N-Phenyl amides are generally more efficient than the corresponding N-benzyl or N,N-dibenzyl analogues. Pinacolborane is found to be more efficient than catecholborane. 相似文献
868.
Traub MC Biteen JS Brunschwig BS Lewis NS 《Journal of the American Chemical Society》2008,130(3):955-964
The effective use of nanocrystalline semiconductors requires control of the chemical and electrical properties of their surfaces. We describe herein a chemical functionalization procedure to passivate surface states on GaAs nanocrystals. Cl-terminated GaAs nanocrystals have been produced by anisotropic etching of oxide-covered GaAs nanocrystals with 6 M HCl(aq). The Cl-terminated GaAs nanocrystals were then functionalized by reaction with hydrazine or sodium hydrosulfide. X-ray photoelectron spectroscopic measurements revealed that the surfaces of the Cl-, hydrazine-, and sulfide-treated nanocrystals were As-rich, due to significant amounts of As0. However, no As0 was observed in the photoelectron spectra after the hydrazine-terminated nanocrystals were annealed at 350 degrees C under vacuum. After the anneal, the N 1s peak of hydrazine-exposed GaAs nanocrystals shifted to 3.2 eV lower binding energy. This shift was accompanied by the appearance of a Ga 3d peak shifted 1.4 eV from the bulk value, consistent with the hypothesis that a gallium oxynitride capping layer had been formed on the nanocrystals during the annealing process. The band gap photoluminescence (PL) was weak from the Cl- and hydrazine- or sulfide-terminated nanocrystals, but the annealed nanocrystals displayed strongly enhanced band-edge PL, indicating that the surface states of GaAs nanocrystals were effectively passivated by this two-step, wet chemical treatment. 相似文献
869.
Chenjie Xu Jin Xie Nathan Kohler Edward G. Walsh Y. Eugene Chin Shouheng Sun Prof. 《化学:亚洲杂志》2008,3(3):548-552
Functionalization of monodisperse superparamagnetic magnetite (Fe3O4) nanoparticles for cell specific targeting is crucial for cancer diagnostics and therapeutics. Targeted magnetic nanoparticles can be used to enhance the tissue contrast in magnetic resonance imaging (MRI), to improve the efficiency in anticancer drug delivery, and to eliminate tumor cells by magnetic fluid hyperthermia. Herein we report the nucleus‐targeting Fe3O4 nanoparticles functionalized with protein and nuclear localization signal (NLS) peptide. These NLS‐coated nanoparticles were introduced into the HeLa cell cytoplasm and nucleus, where the particles were monodispersed and non‐aggregated. The success of labeling was examined and identified by fluorescence microscopy and MRI. The work demonstrates that monodisperse magnetic nanoparticles can be readily functionalized and stabilized for potential diagnostic and therapeutic applications. 相似文献
870.