首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1692篇
  免费   83篇
  国内免费   11篇
化学   1179篇
晶体学   11篇
力学   55篇
数学   240篇
物理学   301篇
  2023年   12篇
  2022年   32篇
  2021年   40篇
  2020年   33篇
  2019年   23篇
  2018年   26篇
  2017年   34篇
  2016年   54篇
  2015年   40篇
  2014年   57篇
  2013年   94篇
  2012年   141篇
  2011年   168篇
  2010年   53篇
  2009年   52篇
  2008年   119篇
  2007年   121篇
  2006年   116篇
  2005年   120篇
  2004年   78篇
  2003年   60篇
  2002年   69篇
  2001年   20篇
  2000年   15篇
  1999年   9篇
  1998年   10篇
  1997年   7篇
  1996年   8篇
  1995年   6篇
  1994年   7篇
  1993年   11篇
  1992年   5篇
  1991年   5篇
  1989年   8篇
  1988年   5篇
  1987年   6篇
  1985年   15篇
  1984年   15篇
  1983年   4篇
  1982年   9篇
  1981年   11篇
  1980年   6篇
  1979年   5篇
  1978年   6篇
  1977年   7篇
  1976年   7篇
  1975年   8篇
  1974年   5篇
  1973年   4篇
  1967年   3篇
排序方式: 共有1786条查询结果,搜索用时 15 毫秒
81.
82.
83.
84.
Stromal cell-derived factor 1α (SDF-1α) or CXCL12 is a small pro-inflammatory chemoattractant cytokine and a substrate of dipeptidyl peptidase IV (DPP-IV). Proteolytic cleavage by DPP-IV inactivates SDF-1α and attenuates its interaction with CXCR4, its cell surface receptor. To enable investigation of suppression of such inactivation with pharmacologic inhibition of DPP-IV, we developed quantitative mass spectrometric methods that differentiate intact SDF-1α from its inactive form. Using top-down strategy in quantification, we demonstrated the unique advantage of keeping SDF-1α’s two disulfide bridges intact in the analysis. To achieve the optimal sensitivity required for quantification of intact and truncated SDF-1α at endogenous levels in blood, we coupled nano-flow tandem mass spectrometry with antibody-based affinity enrichment. The assay has a quantitative range of 20 pmol/L to 20 nmol/L in human plasma as well as in rhesus monkey plasma. With only slight modification, the same assay can be used to quantify SDF-1α in mice. Using two in vivo animal studies as examples, we demonstrated that it was critical to differentiate intact SDF-1α from its truncated form in the analysis of biomarkers for pharmacologic inhibition of DPP-IV activity. These novel methods enable translational research on suppression of SDF-1 inactivation with DPP-IV inhibition and can be applied to relevant clinical samples in the future to yield new insights on change of SDF-1α levels in disease settings and in response to therapeutic interventions.
Figure
?  相似文献   
85.
In this work, a reticulated vitreous carbon electrode (RVCE, 96.5 % porosity, 24 cm?1) was modified with 2-anthraquinonyl groups to electrocatalytically reduce dissolved oxygen in neutral aqueous solution (0.1 M phosphate buffer solution supported with 3 M potassium chloride, pH of 6.7) to hydrogen peroxide (H2O2) at 25 °C under atmospheric pressure. The obtained current density was ca. 3 mA cm?2. For the first time, the oxygen reduction was investigated on a novelly designed RVCE housed in a gravity-feed flow system. Fractional current conversions obtained on the RVC flow cell were compared and contrasted with those on a two-dimensional electrode, viz. a tubular flow electrode. The modified-on catalyst has the benefit in terms of easy separation of the product from the catalyst. The in situ generated low concentration of H2O2 provides potential applications to water purification processes and disinfection for water and food.  相似文献   
86.
In vivo optical imaging must contend with the limitations imposed by the optical window of tissue (600–1000 nm). Although a wide array of fluorophores are available that are visualized in the red and near‐IR region of the spectrum, with the exception of proteases, there are few long wavelength probes for enzymes. This situation poses a particular challenge for studying the intracellular biochemistry of erythrocytes, the high hemoglobin content of which optically obscures subcellular monitoring at wavelengths less than 600 nm. To address this, tunable fluorescent reporters for protein kinase activity were developed. The probing wavelength is preprogrammed by using readily available fluorophores, thereby enabling detection within the optical window of tissue, specifically in the far‐red and near‐IR region. These agents were used to monitor endogenous cAMP‐dependent protein kinase activity in erythrocyte lysates and in intact erythrocytes when using a light‐activatable reporter.  相似文献   
87.
Cooperativity between weak hydrogen bonds can be revealed in molecular clusters isolated in the gas phase. Here we examine the structure, internal dynamics, and origin of the weak intermolecular forces between sevoflurane and a benzene molecule, using multi‐isotopic broadband rotational spectra. This heterodimer is held together by a primary C? H???π hydrogen bond, assisted by multiple weak C? H???F interactions. The multiple nonbonding forces hinder the internal rotation of benzene around the isopropyl C? H bond in sevoflurane, producing detectable quantum tunneling effects in the rotational spectrum.  相似文献   
88.
5‐Vinyl‐2′‐deoxyuridine (VdU) is the first reported metabolic probe for cellular DNA synthesis that can be visualized by using an inverse electron demand Diels–Alder reaction with a fluorescent tetrazine. VdU is incorporated by endogenous enzymes into the genomes of replicating cells, where it exhibits reduced genotoxicity compared to 5‐ethynyl‐2′‐deoxyuridine (EdU). The VdU–tetrazine ligation reaction is rapid (k≈0.02 M ?1 s?1) and chemically orthogonal to the alkyne–azide “click” reaction of EdU‐modified DNA. Alkene–tetrazine ligation reactions provide the first alternative to azide–alkyne click reactions for the bioorthogonal chemical labeling of nucleic acids in cells and facilitate time‐resolved, multicolor labeling of DNA synthesis.  相似文献   
89.
Broadband rotational spectroscopy of water clusters produced in a pulsed molecular jet expansion has been used to determine the oxygen atom geometry in three isomers of the nonamer and two isomers of the decamer. The isomers for each cluster size have the same nominal geometry but differ in the arrangement of their hydrogen bond networks. The nearest neighbor O? O distances show a characteristic pattern for each hydrogen bond network isomer that is caused by three‐body effects that produce cooperative hydrogen bonding. The observed structures are the lowest energy cluster geometries identified by quantum chemistry and the experimental and theoretical O? O distances are in good agreement. The cooperativity effects revealed by the hydrogen bond O? O distance variations are shown to be consistent with a simple model for hydrogen bonding in water that takes into account the cooperative and anticooperative bonding effects of nearby water molecules.  相似文献   
90.
Here, we give an overview of the protein-ligand binding portion of the Statistical Assessment of Modeling of Proteins and Ligands 4 (SAMPL4) challenge, which focused on predicting binding of HIV integrase inhibitors in the catalytic core domain. The challenge encompassed three components—a small “virtual screening” challenge, a binding mode prediction component, and a small affinity prediction component. Here, we give summary results and statistics concerning the performance of all submissions at each of these challenges. Virtual screening was particularly challenging here in part because, in contrast to more typical virtual screening test sets, the inactive compounds were tested because they were thought to be likely binders, so only the very top predictions performed significantly better than random. Pose prediction was also quite challenging, in part because inhibitors in the set bind to three different sites, so even identifying the correct binding site was challenging. Still, the best methods managed low root mean squared deviation predictions in many cases. Here, we give an overview of results, highlight some features of methods which worked particularly well, and refer the interested reader to papers in this issue which describe specific submissions for additional details.  相似文献   
[首页] « 上一页 [4] [5] [6] [7] [8] 9 [10] [11] [12] [13] [14] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号