The mechanism of transition-metal tetrahydroborate dimerization was established for the first time on the example of (Ph(3)P)(2)Cu(η(2)-BH(4)) interaction with different proton donors [MeOH, CH(2)FCH(2)OH, CF(3)CH(2)OH, (CF(3))(2)CHOH, (CF(3))(3)CHOH, p-NO(2)C(6)H(4)OH, p-NO(2)C(6)H(4)N═NC(6)H(4)OH, p-NO(2)C(6)H(4)NH(2)] using the combination of experimental (IR, 190-300 K) and quantum-chemical (DFT/M06) methods. The formation of dihydrogen-bonded complexes as the first reaction step was established experimentally. Their structural, electronic, energetic, and spectroscopic features were thoroughly analyzed by means of quantum-chemical calculations. Bifurcate complexes involving both bridging and terminal hydride hydrogen atoms become thermodynamically preferred for strong proton donors. Their formation was found to be a prerequisite for the subsequent proton transfer and dimerization to occur. Reaction kinetics was studied at variable temperature, showing that proton transfer is the rate-determining step. This result is in agreement with the computed potential energy profile of (Ph(3)P)(2)Cu(η(2)-BH(4)) dimerization, yielding [{(Ph(3)P)(2)Cu}(2)(μ,η(4)-BH(4))](+). 相似文献
The surface microreliefs and voltage–current characteristics of gold electrodes and modified thick-film graphite-containing electrodes were studied. The relationship between the formation of an analytical signal of mercury(II) and the surface microrelief was determined. It was found that the surface of a modified graphite-containing electrode is a self-organizing ensemble of microelectrodes. 相似文献
Differential scanning calorimetry (DSC) technique has been applied for the experimental determination of temperature and heat of phase transition of pure silicon (7 N) during heating and cooling cycles at the rate of 10 K min?1. The measurements were carried out in the temperature range of 25–1450 °C in a flow gas atmosphere (Ar, 99.9992%) using three types of crucibles made of alumina, h-BN and alumina covered with h-BN coating. The following characteristics were estimated from DSC curves: melting point of silicon—1414 °C, the heat of fusion—1826 J g?1 and the heat of solidification—1654 J g?1. It was found that the silicon evaporation phenomenon accompanying the tests had no effect on the measurements of temperature during solid-to-liquid and liquid-to-solid transformations and on the measurement of the latent heat of fusion. The effect of crucible type on the DSC measurements is discussed.
Recent research revealed that tissue spray mass spectrometry enables rapid molecular profiling of biological tissues, which is of great importance for the search of disease biomarkers as well as for online surgery control. However, the payback for the high speed of analysis in tissue spray analysis is the generally lower chemical sensitivity compared with the traditional approach based on the offline chemical extraction and electrospray ionization mass spectrometry detection. In this study, high resolution mass spectrometry analysis of endometrium tissues of different localizations obtained using direct tissue spray mass spectrometry in positive ion mode is compared with the results of electrospray ionization analysis of lipid extracts. Identified features in both cases belong to three lipid classes: phosphatidylcholines, phosphoethanolamines, and sphingomyelins. Lipids coverage is validated by hydrophilic interaction liquid chromatography with mass spectrometry of lipid extracts. Multivariate analysis of data from both methods reveals satisfactory differentiation of eutopic and ectopic endometrium tissues. Overall, our results indicate that the chemical information provided by tissue spray ionization is sufficient to allow differentiation of endometrial tissues by localization with similar reliability but higher speed than in the traditional approach relying on offline extraction.
We survey the structure and electronic properties of the family of higher trifluoromethylated C70(CF3)n molecules with n=14, 16, 18, and 20. Twenty‐two available compounds, of which thirteen are newly obtained and characterized, demonstrate the broad diversity of π‐system topologies, which enabled us to study the interplay between the CF3 addition pattern and the electronic properties. UV/Vis spectroscopic and cyclic voltammetric studies demonstrate the importance of the exact addition pattern rather than the plain number of addends. Of particular interest is the skew pentagonal pyramid (SPP) addition pattern, which enables formation of closed‐shell cyclopentadienyl anions C70(CF3)n? 1 ? through CF3 detachment upon electron transfer. A detailed study of the process is presented for a SPP‐C70(CF3)16 where potentiostatic electrolysis at the second reduction potential gives C70(CF3)15? oxidizable to a persistent C70(CF3)15· radical. Together with the literature data for the lower C70(CF3)n compounds with n=2–12, the present results show good correlation between the experimental boundary level positions and the DFT predictions. The compounds turn out to be electron acceptor molecular semiconductors with experimental LUMO energies and HOMO–LUMO gaps within the ranges of ?4.3 to ?3.7 eV and 1.6 to 3.3 eV, respectively, depending on the shape of the conjugated fragments. The HOMO levels fall within the range of ?5.6 to ?6.9 eV and show linear correlation with the number of addends. 相似文献
A nitrogen‐rich compound, ReN8?x N2, was synthesized by a direct reaction between rhenium and nitrogen at high pressure and high temperature in a laser‐heated diamond anvil cell. Single‐crystal X‐ray diffraction revealed that the crystal structure, which is based on the ReN8 framework, has rectangular‐shaped channels that accommodate nitrogen molecules. Thus, despite a very high synthesis pressure, exceeding 100 GPa, ReN8?x N2 is an inclusion compound. The amount of trapped nitrogen (x) depends on the synthesis conditions. The polydiazenediyl chains [?N=N?]∞ that constitute the framework have not been previously observed in any compound. Ab initio calculations on ReN8?x N2 provide strong support for the experimental results and conclusions. 相似文献
We report the first examples of purely organic donor–acceptor materials with integrated π‐bowls (πBs) that combine not only crystallinity and high surface areas but also exhibit tunable electronic properties, resulting in a four‐orders‐of‐magnitude conductivity enhancement in comparison with the parent framework. In addition to the first report of alkyne–azide cycloaddition utilized for corannulene immobilization in the solid state, we also probed the charge transfer rate within the Marcus theory as a function of mutual πB orientation for the first time, as well as shed light on the density of states near the Fermi edge. These studies could foreshadow new avenues for πB utilization for the development of optoelectronic devices or a route for highly efficient porous electrodes. 相似文献