首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1640篇
  免费   88篇
  国内免费   3篇
化学   1386篇
晶体学   9篇
力学   12篇
数学   141篇
物理学   183篇
  2023年   25篇
  2022年   67篇
  2021年   107篇
  2020年   66篇
  2019年   56篇
  2018年   60篇
  2017年   31篇
  2016年   99篇
  2015年   56篇
  2014年   80篇
  2013年   114篇
  2012年   113篇
  2011年   133篇
  2010年   79篇
  2009年   67篇
  2008年   109篇
  2007年   83篇
  2006年   81篇
  2005年   76篇
  2004年   62篇
  2003年   39篇
  2002年   26篇
  2001年   13篇
  2000年   6篇
  1999年   15篇
  1998年   8篇
  1997年   7篇
  1996年   13篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1971年   1篇
  1969年   1篇
  1966年   1篇
  1964年   1篇
  1961年   1篇
  1960年   2篇
排序方式: 共有1731条查询结果,搜索用时 484 毫秒
231.
232.

Differential scanning calorimetry (DSC) technique has been applied for the experimental determination of temperature and heat of phase transition of pure silicon (7 N) during heating and cooling cycles at the rate of 10 K min?1. The measurements were carried out in the temperature range of 25–1450 °C in a flow gas atmosphere (Ar, 99.9992%) using three types of crucibles made of alumina, h-BN and alumina covered with h-BN coating. The following characteristics were estimated from DSC curves: melting point of silicon—1414 °C, the heat of fusion—1826 J g?1 and the heat of solidification—1654 J g?1. It was found that the silicon evaporation phenomenon accompanying the tests had no effect on the measurements of temperature during solid-to-liquid and liquid-to-solid transformations and on the measurement of the latent heat of fusion. The effect of crucible type on the DSC measurements is discussed.

  相似文献   
233.
Analytical and Bioanalytical Chemistry - A new perspective on the relevant problem—creating simple, rapid, and efficient protein sensors based on microstructured optical fibers using a simple...  相似文献   
234.
Advances in neuroscience have resulted in the development of new diagnostic and therapeutic agents for potential use in the central nervous system (CNS). However, the ability to deliver the majority of these agents to the brain is limited by the blood-brain barrier (BBB), a specialized structure of the blood vessel wall that hampers transport and diffusion from the blood to the brain. Many CNS disorders could be treated with drugs, enzymes, genes, or large-molecule biotechnological products such as recombinant proteins, if they could cross the BBB. This article reviews the problems of the BBB presence in treating the vast majority of CNS diseases and the efforts to circumvent the BBB through the design of new drugs and the development of more sophisticated delivery methods. Recent advances in the development of noninvasive, targeted drug delivery by MRI-guided ultrasound-induced BBB disruption are also summarized.  相似文献   
235.
Molybdenum blue dispersions were synthesized by reducing an acidic molybdate solution with glucose, hydroquinone and ascorbic acid. The influence of the H/Mo molar ratio on the rate of formation of molybdenum particles was established. For each reducing agent, were determined the rate constant and the order of the particle formation and were established the conditions for the formation of aggregative stable dispersion with the maximum concentration of particles. The dispersed phase is represented by toroidal molybdenum oxide nanoclusters, which was confirmed by the results of UV/Vis, FTIR, XPS spectroscopy and DLS.  相似文献   
236.
The effect of donor (D)–acceptor (A) alignment on the materials electronic structure was probed for the first time using novel purely organic porous crystalline materials with covalently bound two- and three-dimensional acceptors. The first studies towards estimation of charge transfer rates as a function of acceptor stacking are in line with the experimentally observed drastic, eight-fold conductivity enhancement. The first evaluation of redox behavior of buckyball- or tetracyanoquinodimethane-integrated crystalline was conducted. In parallel with tailoring the D-A alignment responsible for “static” changes in materials properties, an external stimulus was applied for “dynamic” control of the electronic profiles. Overall, the presented D–A strategic design, with stimuli-controlled electronic behavior, redox activity, and modularity could be used as a blueprint for the development of electroactive and conductive multidimensional and multifunctional crystalline porous materials.  相似文献   
237.
Journal of Thermal Analysis and Calorimetry - The curing behaviour of the composition of a liquid-crystalline diepoxy monomer (LCEM) with the central triaromatic mesogenic group was studied using...  相似文献   
238.
Journal of Solid State Electrochemistry - A series of composites based on the perfluorinated MF-4SK membrane and polyaniline was obtained under electrodiffusion of monomer and oxidizer. Aniline was...  相似文献   
239.
Monodisperse dye-containing crosslinked particles are promising for application in novel optical chemical sensors due to their intrinsic sensitivity. However, preparation of these particles in aqueous media still remains a challenge, since luminophores inhibit radical processes or else cannot embed into polymer chains because of difference in monomer reactivity ratios. In this work, novel dye-containing monodisperse crosslinked particles were prepared and characterized. In order to obtain dye-containing monodisperse crosslinked particles, we studied seed copolymerization of styrene in the presence of divinylbenzene. The influence of nature and concentration of the used comonomers and co-solvents on shape, size distributions and surface characteristics of the particles formed was investigated. Shapes and diameters of the particles were analyzed by DLS, TEM and SEM. The data of SEM and optical spectroscopy studies demonstrated that the synthesized particles were able to self-assemble into thin-film three-dimensional ordered structures. Finally, the structures under study are promising for development of sensor devices with optical response to acetone.  相似文献   
240.
The X‐ray standing‐wave method was applied to study the elemental composition and molecular organization of ordered protein films of alkaline phosphatase exposed to different xenobiotics (drug compounds, lead). Binding of metal ions from triply distilled water to protein molecules has been experimentally observed. Definite differences in the arrangement of impurity metal ions in the films have been established. The considerable enhancement of protein–metal interactions is attributed to partial rearrangement of the protein native structure, induced by xenobiotics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号