首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6316篇
  免费   296篇
  国内免费   4篇
化学   4651篇
晶体学   48篇
力学   84篇
数学   843篇
物理学   990篇
  2024年   5篇
  2023年   71篇
  2022年   121篇
  2021年   163篇
  2020年   148篇
  2019年   127篇
  2018年   158篇
  2017年   132篇
  2016年   272篇
  2015年   210篇
  2014年   243篇
  2013年   443篇
  2012年   486篇
  2011年   553篇
  2010年   282篇
  2009年   230篇
  2008年   413篇
  2007年   401篇
  2006年   339篇
  2005年   342篇
  2004年   265篇
  2003年   211篇
  2002年   160篇
  2001年   144篇
  2000年   110篇
  1999年   76篇
  1998年   51篇
  1997年   30篇
  1996年   62篇
  1995年   37篇
  1994年   33篇
  1993年   36篇
  1992年   44篇
  1991年   24篇
  1990年   10篇
  1989年   7篇
  1988年   15篇
  1987年   11篇
  1986年   14篇
  1985年   17篇
  1984年   19篇
  1983年   10篇
  1982年   19篇
  1981年   12篇
  1980年   8篇
  1979年   10篇
  1978年   8篇
  1976年   5篇
  1975年   5篇
  1973年   4篇
排序方式: 共有6616条查询结果,搜索用时 15 毫秒
991.
A new multiresidue method has been developed and validated for the determination of more than 140 pesticide residues in cucumber and orange by gas chromatography coupled to triple quadrupole mass spectrometry (GC-QqQ-MS/MS) in a single run of 25.50 min. The triple quadrupole (QqQ) analyzer simultaneously operated in the selected reaction monitoring (SRM) and selected ion monitoring (SIM) modes, acquiring two or three transitions per compound. Samples were extracted by the application of a single-phase extraction of 10 g of sample with acetonitrile containing 1% of acetic acid, followed by a liquid-liquid partition formed by the addition of 4 g of MgSO(4) and 1 g of NaOAc. A dispersive solid-phase extraction (D-SPE) with primary secondary amine (PSA) was applied to clean up the extracts. A final concentration step was included in order to increase sensitivity in the instrumental analysis. The method was properly validated in each matrix in a wide dynamic range (10-400 microg kg(-1)): this work relies on a new quantification strategy by the use of two calibration curves to increase the dynamic range, which permitted reduction of sample dilutions and increase in sample throughput. Recovery was studied at three concentration levels (11.5, 50.0, and 150.0 microg kg(-1)), yielding values in the range 70-110% with precision values, expressed as relative standard deviation (RSD), lower than 20 and 25% for the intraday and interday precision, respectively. Limits of quantification (LOQs) were established at 10 microg kg(-1), the lowest maximum residue level (MRL) value set by the European Union in vegetables. The method was successfully applied to the analysis of pesticide residues in real samples from the southeastern Spain. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   
992.
We show that the energetics and electronic couplings for excess electron transfer (EET) can be accurately estimated by using unoccupied Kohn-Sham orbitals (UKSO) calculated for neutral pi stacks. To assess the performance of different DFT functionals, we use MS-PT2 results for seven pi stacks of nucleobases as reference data. The DFT calculations are carried out by using the local spin density approximation SVWN, two generalized gradient approximation functionals BP86 and BLYP, and two hybrid functionals B3LYP and BH&HLYP. Best estimations within the UKSO approach are obtained by the B3LYP and SVWN methods. TD DFT calculations provide less accurate values of the EET parameters as compared with the UKSO data. Also, the excess charge distribution in the radical anions is well described by the LUMOs of neutral systems. In contrast, spin-unrestricted DFT calculations of radical anions considerably overestimate delocalization of the excess electron. The excellent results obtained for the ground and excited states of the radical anions (excitation energy, transition dipole moment, electronic coupling, and excess electron distribution) by using UKSO of neutral dimers suggest an efficient strategy to calculate the EET parameters for DNA pi stacks.  相似文献   
993.
The interaction of L (-) (L = F, Cl, Br, I, Al, Ga and In) with a uracil molecule has been studied with B3LYP density-functional geometry optimizations and electron-propagator calculations of vertical electron detachment energies. Because the extra electron of the anion is localized on L, nonconventional hydrogen bonds are formed. The interactions of halide anions with uracil are similar to the interactions of uracil with Cu (-), Ag (-) and Au (-) that were reported previously. Whereas halide and transition metal anion complexes with uracils are singlets, the anions formed with Al, Ga and In are triplets. Vertical electron detachment energies (VEDEs) are higher for (uracil-L) (-) than the analogous values for isolated L (-) anions. Predicted VEDEs are assigned to Dyson orbitals that may be localized on L (-) or uracil.  相似文献   
994.
The interaction of Ag and Au with uracil has been studied using the B3LYP density-functional approach. Neutral, cationic, and anionic systems were analyzed in order to study the influence of the atomic charge on bond formation. This interaction becomes stronger as the charge increases. In the case of neutral systems, a weak association is present. In the case of cations, the interaction is mainly electrostatic. The extra electron of the anions is localized on the metal atom. Consequently, nonconventional hydrogen bonds are formed. The ionization energy of uracil-Ag and uracil-Au is lower than the corresponding values for the metal atoms and uracil molecule, while the electron affinity is higher for uracil-Ag and uracil-Au than the analogous values for the isolated Ag, Au, and uracil. This might have significance for further experiments and possibly for applications, where the movement of the electrons is important. In the case of uracil-Ag and uracil-Au (anions), it may be possible to induce the detachment of one electron from the anion and also to remove a single hydrogen atom. It is possible that tight competition exists between the H dissociation and electron aloofness.  相似文献   
995.
We report molecular dynamics simulation results of equilibrium and dynamical characteristics pertaining to the solvation of the dye coumarin 153 (C153) trapped within hydrophobic cavities of di- and trimethylated beta-cyclodextrins (CD) in aqueous solutions. We found that stable configurations of the encapsulated probe are characterized by a slanted docking, in which the plane of the C153 lies mostly parallel to one of the glucose units of the CD. "In and out" dynamical modes of the encapsulated probe present very small amplitudes. The rotational dynamics of the trapped coumarin can be cast in terms of a simple model that includes diffusive motions within a local restrictive environment coupled to the overall rotational motion of the CD. We have examined the early stages of the solvation response of the environment following a vertical excitation of the probe. Regardless of the degree of CD methylation, the water dynamical response seems to be completed within 2-3 ps and does not differ substantially from that observed for nonencapsulated probes. The CD response is characterized by a single, subpicosecond relaxation that involves intramolecular motions. We also explored dynamical modes that could account for the recently reported persistence of Stokes shifts in the nanosecond time domain. In all cases, the only sources of ultraslow dynamics that we detected were those associated with gauche-trans interconversions in primary hydroxyl chains of the CD, which do not seem to be directly connected to the electronic excitation of the probe.  相似文献   
996.
Recent discovery of magnesium isotope effect in the rate of enzymatic synthesis of adenosine triphosphate (ATP) offers a new insight into the mechanochemistry of enzymes as the molecular machines. The activity of phosphorylating enzymes (ATP-synthase, phosphocreatine, and phosphoglycerate kinases) in which Mg(2+) ion has a magnetic isotopic nucleus 25Mg was found to be 2-3 times higher than that of enzymes in which Mg(2+) ion has spinless, nonmagnetic isotopic nuclei 24Mg or 26Mg. This isotope effect demonstrates unambiguously that the ATP synthesis is a spin-dependent ion-radical process. The reaction schemes, suggested to explain the effect, imply a reversible electron transfer from the terminal phosphate anion of ADP to Mg(2+) ion as a first step, generating ion-radical pair with singlet and triplet spin states. The yields of ATP along the singlet and triplet channels are controlled by hyperfine coupling of unpaired electron in 25Mg+ ion with magnetic nucleus 25Mg. There is no difference in the ATP yield for enzymes with 24Mg and 26Mg; it gives evidence that in this reaction magnetic isotope effect (MIE) operates rather than classical, mass-dependent one. Similar effects have been also found for the pyruvate kinase. Magnetic field dependence of enzymatic phosphorylation is in agreement with suggested ion-radical mechanism.  相似文献   
997.
A complete Deuterium NMR study performed on partially deuterated liquid crystalline carbosilane dendrimer is here reported. The dendrimer under investigation shows a SmA phase in a large temperature range from 381 to 293 K, and its mesophasic properties have been previously determined. However, in this work the occurrence of a biphasic region between the isotropic and SmA phases has been put in evidence. The orientational order of the dendrimer, labeled on its lateral mesogenic units, is here evaluated in the whole temperature range by means of (2)H NMR, revealing a peculiar trend at low temperatures (T < 326 K). This aspect has been further investigated by a detailed analysis of the (2)H NMR spectral features, such as the quadrupolar splitting, the line shape, and the line-width, as a function of temperature. In the context of a detailed NMR analysis, relaxation times (T(1) and T(2)) have also been measured, pointing out a slowing down of the dynamics by decreasing the temperature, which determines from one side the spectral changes observed in the NMR spectra, on the other the observation of a minimum in the T(1).  相似文献   
998.
Mesoporous silica nanoparticles (MSNs) are widely known for their versatile applications. One of the most extended is as drug delivery systems for the treatment of cancer and other diseases. This review compiles the most representative examples in the last years of functionalized MSNs as photosensitizer carriers for photodynamic therapy (PDT) against cancer. Several commercially available photosensitizers (PSs) demonstrated poor solubility in an aqueous medium and insufficient selectivity for cancer tissues. The tumor specificity of PSs is a key factor for enhancing the PDT effect and at the same time reducing side effects. The use of nanoparticles and particularly MSNs, in which PS is covalently anchored or physically embedded, can overcome these limitations. For that, PS-MSNs can be externally decorated with compounds of interest in order to act as an active target for certain cancer cells, demonstrating enhanced phototoxicity in vitro and in vivo. The objective of this review is to collect and compare different nanosystems based on PS-MSNs pointing out their advantages in PDT against diverse types of cancers.  相似文献   
999.
Confinement-imposed photophysics was probed for novel stimuli-responsive hydrazone-based compounds demonstrating a conceptual difference in their behavior within 2D versus 3D porous matrices for the first time. The challenges associated with photoswitch isomerization arising from host interactions with photochromic compounds in 2D scaffolds could be overcome in 3D materials. Solution-like photoisomerization rate constants were realized for sterically demanding hydrazone derivatives in the solid state through their coordinative immobilization in 3D scaffolds. According to steady-state and time-resolved photophysical measurements and theoretical modeling, this approach provides access to hydrazone-based materials with fast photoisomerization kinetics in the solid state. Fast isomerization of integrated hydrazone derivatives allows for probing and tailoring resonance energy transfer (ET) processes as a function of excitation wavelength, providing a novel pathway for ET modulation.  相似文献   
1000.
Scholl oxidation has become an essential reaction in the bottom-up synthesis of molecular nanographenes. Herein, we describe a Scholl reaction controlled by the electronic effects on the starting substrate ( 1 a , b ). Anthracene-based polyphenylenes lead to spironanographenes under Scholl conditions. In contrast, an electron-deficient anthracene substrate affords a helically arranged molecular nanographene formed by two orthogonal dibenzo[fg,ij]phenanthro-[9,10,1,2,3-pqrst]pentaphene (DBPP) moieties linked through an octafluoroanthracene core. Density Functional Theory (DFT) calculations predict that electronic effects control either the first formation of spirocycles and subsequent Scholl reaction to form spironanographene 2 , or the expected dehydrogenation reaction leading solely to the helical nanographene 3 . The crystal structures of four of the new spiro compounds (syn 2 , syn 9 , anti 9 and syn 10 ) were solved by single crystal X-ray diffraction. The photophysical properties of the new molecular nanographene 3 reveal a remarkable dual fluorescent emission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号