首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   9篇
化学   213篇
力学   22篇
数学   16篇
物理学   42篇
  2023年   3篇
  2022年   26篇
  2021年   12篇
  2020年   18篇
  2019年   16篇
  2018年   10篇
  2017年   9篇
  2016年   18篇
  2015年   11篇
  2014年   16篇
  2013年   29篇
  2012年   13篇
  2011年   24篇
  2010年   12篇
  2009年   8篇
  2008年   8篇
  2007年   13篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   5篇
  2002年   2篇
  2000年   2篇
  1999年   3篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1990年   2篇
  1988年   1篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有293条查询结果,搜索用时 15 毫秒
31.

In this paper, an experimental study, aimed at delaying flow separation on a high-lift device using a pulsed blowing excitation method, is reported. The main objective of this investigation was to evaluate a new pulsed jet generation strategy to enhance flow control performance. In these experiments, two types of signal waveform were implemented to produce the unsteady blowing; a simple square-wave excitation signal for the first case, and a burst modulated excitation signal for the second case. The signal modulation was the first time to be used for a fast-switching solenoid valve actuator. Another objective of this study was to evaluate a new arrangement of the jet exit slots, in the form of a vortex generator which was employed for the first time on the high-lift device. For this purpose, a NASA SC(2)-0714 airfoil with a single slotted flap was employed. The vortex generator jets emanated from the shoulder of the trailing-edge flap with excitation frequencies from 40 to 1000 Hz. Pressure distribution around the model and wake total pressure deficit were measured. The results indicated that ejection from vortex generator slot pairs was able to prevent flow separation completely in most conditions. These measurements revealed that the burst modulated excitation signal was accompanied by more aerodynamic improvements and less air consumption relative to the simple pulsed jet excitation signal. In the best flow control mode, the results showed about a 53% increase in the value of the suction pressure peak on the flap and a 38% decrease in drag with a reduction in total pressure loss.

  相似文献   
32.
Two-phase CFD calculations, using a Lagrangian model and commercial code Fluent 6.2.16, were employed to calculate the gas and droplet flows and film cooling effectiveness with and without mist on a flat plate. Two different three dimensional geometries are generated and the effects of the geometrical shape, size of droplets, mist concentration in the coolant flow and temperature of mainstream flow for different blowing ratios are studied. A cylindrical and laterally diffused hole with a streamwise angle of 30° and spanwise angle of 0° are used. The diameter of film cooling (d) hole, and the hole length to diameter ratio (L/d) for both of geometries are 10 mm and 4, respectively. Also the blowing ratio ranges from 1.0 to 2.0, and the mainstream Reynolds number based on the mainstream velocity and hole diameter (Re d) is 6,219. The results are shown for different droplets diameters (1–10 μm), concentrations (1–5%) and mainstream temperatures (350–500 K). The centreline effectiveness and distribution of effectiveness on the surface of cooling wall are presented.  相似文献   
33.
Treatment of silatranyl- and 3,7,10-trimethylsilatranyl-ethylenes with diazomethane/Pd(OAc)2 gives the corresponding silatranylcyclopropanes in high yields.  相似文献   
34.
In the present study the effects of surface tension on the growth and collapse stages of cavitation bubbles are studied individually for both spherical and nonspherical bubbles. The Gilmore equation is used to simulate the spherical bubble dynamics by considering mass diffusion and heat transfer. For the collapse stage near a rigid boundary, the Navier–Stokes and energy equations are used to simulate the flow domain, and the VOF method is adopted to track the interface between the gas and the liquid phases. Simulations are divided into two cases. In the first case, the collapse stage alone is considered in both spherical and nonspherical situations with different conditions of bubble radius and surface tension. According to the results, surface tension has no significant effects on the flow pattern and collapse rate. In the second case, both the growth and collapse stages of bubbles with different initial radii and surface tensions are considered. In this case surface tension affects the growth stage considerably and, as a result, the jet velocity and collapse time decrease with increasing surface tension coefficient. This effect is more significant for bubbles with smaller radii.  相似文献   
35.
Delineation of clinical complications secondary to fungal infections, such as cryptococcal meningitis, and the concurrent emergence of multidrug resistance in large population subsets necessitates the need for the development of new classes of antifungals. Herein, we report a series of ring-modified histidine-containing short cationic peptides exhibiting anticryptococcal activity via membrane lysis. The N-1 position of histidine was benzylated, followed by iodination at the C-5 position via electrophilic iodination, and the dipeptides were obtained after coupling with tryptophan. In vitro analysis revealed that peptides Trp-His[1-(3,5-di-tert-butylbenzyl)-5-iodo]-OMe (10d, IC50 = 2.20 μg/mL; MIC = 4.01 μg/mL) and Trp-His[1-(2-iodophenyl)-5-iodo)]-OMe (10o, IC50 = 2.52 μg/mL; MIC = 4.59 μg/mL) exhibit promising antifungal activities against C. neoformans. When administered in combination with standard drug amphotericin B (Amp B), a significant synergism was observed, with 4- to 16-fold increase in the potencies of both peptides and Amp B. Electron microscopy analysis with SEM and TEM showed that the dipeptides primarily act via membrane disruption, leading to pore formation and causing cell lysis. After entering the cells, the peptides interact with the intracellular components as demonstrated by confocal laser scanning microscopy (CLSM).  相似文献   
36.
The current work examined the pharmacological potential of a selected flavanone derivative 2-hydroxyflavanone as a promising remedy for the treatment and management of pain. The selected flavanone derivative (2-HF) was evaluated for its analgesic and anti-inflammatory potentials following standard pharmacological protocols including hot plate, acetic acid-induced writhing and tail immersion tests. Naloxone and pentylenetetrazol were used to evaluate the potential implication of GABAergic and opioidergic mechanisms. The anti-inflammatory potential of 2-HF was confirmed using carrageenan-, serotonin- and histamine-induced paw edema models as well as a xylene-induced ear edema model. Furthermore, the anti-neuropathic potential of 2-HF was tested using a cisplatin-induced neuropathic pain model. Our sample, at the tested concentrations of 15, 30 and 45 mg kg−1, showed considerable analgesic, anti-inflammatory effects, as well as efficacy against neuropathic pain. Naloxone and pentylenetetrazol at 1 and 15 mg kg−1 antagonized the anti-nociceptive activities of 2-hydroxyflavanone indicating the involvement of opioidergic and GABAergic mechanisms. In the static allodynia model, combination of gabapentin 75 mg kg−1 with 2-HF at 15, 30, 45 mg kg−1 doses exhibited considerable efficacy. In cold allodynia, 2-hydroxyflavanone, at doses of 15, 30 and 45 mg kg−1 and in combination with gabapentin (75 mg kg−1), demonstrated prominent anti-allodynic effects. The paw withdrawal latency was considerably increased in gabapentin + cisplatin treated groups. Moreover, cisplatin + 2-hydroxyflavanone 15, 30, 45 mg kg−1 showed increases in paw withdrawal latency. Likewise, considerable efficacy was observed for 2-hydroxyflavanone in thermal hyperalgesia and dynamic allodynia models. Our findings suggest that 2-hydroxyflavanone is a potential remedy for pain syndrome, possibly mediated through opioidergic and GABAergic mechanisms.  相似文献   
37.
A novel, sensitive and selective adsorptive stripping procedure for simultaneous determination of iron, copper and cadmium is presented. The method is based on the adsorptive accumulation of thymolphthalexone (TPN) complexes of these elements onto a hanging mercury drop electrode, followed by reduction of adsorbed species by voltammetric scan using differential pulse modulation. The influences of control variables on the sensitivity of the proposed method for the simultaneous determination of iron, copper and cadmium were studied using the Derringer desirability function. The optimum analytical conditions were found to be TPN concentration of 2.0 μM, pH of 9.5, and accumulation potential at ?0.4 V vs. Ag/AgCl with an accumulation time of 60 s. The peak currents are proportional to the concentration of iron, copper and cadmium over the 1–80, 0.5–100 and 1–100 ng mL?1 ranges with detection limits of 0.5, 0.4 and 0.9 ng mL?1, respectively. The R.S.D. at a concentration level of 20 ng mL?1 of iron, copper and cadmium were 2.5%, 0.9% and 1.5% (n=6), respectively. The procedure was applied to the simultaneous determination of iron, copper and cadmium in the tap water and some synthetic samples with satisfactory results.  相似文献   
38.
The dissolution of Cu in solutions of HNO3 of different concentrations has been studied by the thermometric method. Starting from the initial temperature, Ti, the temperature—time curves exhibit an induction period followed by a rapid rise in temperature to a maximum value, Tm, attained t min after the start of the reaction. Tm increases and t decreases with increase of the acid concentration, M. ΔT (i.e.Tm ? Ti) and the reaction number (R.N. = (Tm ? Ti)/t) vary with M according to: ΔT = k(M ? M0) and R.N. = A1Mn, where k, M0, A1 and n are constants.The effect of varying concentrations of HCl, H2SO4 and H3PO4 on the R.N. of Cu in 3.5 M HNO3 was examined. Small amounts of these acids lower the R.N. (inhibition) due to the displacement of an active species on the surface of the metal by the anion of the acid. Larger additions of the acids accelerate dissolution. The concentration at which the added acid changes from corrosion-inhibitor to accelerator varies as HCl < H2SO4 < H3PO4. This sequence is considered to parallel the strength of adsorption of the respective anions. The results of experiments with salt additions confirm this view; all salts act only as dissolution-retardants. Calculations pertaining to the effect of the various ions on the R.N. support the conclusion that the dissolution of Cu in HNO3 is autocatalytic in nature, and depends on the [H+]/[NO3?] ratio.Cu does not dissolve in air-free, cold HCl. Attack takes place, however, in the presence of KNO3. Under these conditions attack is of the pitting- rather than the general type. The temperature rises suddenly after an incubation period, which decreases in length with increase of the amount of the added salt.Proof of the involvement of HNO2 in the autocatalytic cycle of Cu dissolution in HNO3 is obtained from the results of urea additions to the solution.  相似文献   
39.
Synthesis of 3β-acetoxy-24-aza-24-desoxa-xymalogenin Starting from the pregnenolone-derivative 1 we report the synthesis of the possibly cardiac-active compound 24-aza-24-desoxa-xysmalogenin 15 .  相似文献   
40.
Reaction of cis-[Ptph2(SMe2)2] with Me2PCH2PMe2 (dmpm) gave cis-[PtPh2(dmpm-P)2] (1) or cis,cis-[Pt2Ph4(μ-dmpm)2] (2) and reaction of 1 with [Pt2Me4(μ-SMe2)2] gave cis,cis-[Ph2Pt(μ-dmpm)2PtMe2] (3). Reaction of 1 with trans-[PtClR(SMe2)2] gave cis,trans-[Ph2Pt(μ-dmpm)2PtClR], R = Me (5) or Ph (6), and in polar solvents, these isomerized to give [Ph2Pt(μ-dmpm)2PtR]+Cl. When R = Me, further isomerization via the phenyl group transfer gave [PhMePt(μ-dmpm)2PtPh]+Cl. Oxidative addition of methyl iodide occurred reversibly at the cis-[PtMe2P2 unit of 3 to give cis,fac-[Ph2Pt(μ-dmpm)2PtIMe3] but complex 2 failed to react with MeI. A comparison with similar known complexes of Ph2PCH2PPh2 (dppm) is made and differences are attributed primarily to the lower steric hindrance of dmpm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号