首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   13篇
  国内免费   7篇
化学   135篇
力学   11篇
数学   9篇
物理学   30篇
  2022年   10篇
  2021年   2篇
  2020年   10篇
  2019年   12篇
  2018年   12篇
  2017年   15篇
  2016年   16篇
  2015年   11篇
  2014年   14篇
  2013年   26篇
  2012年   12篇
  2011年   14篇
  2010年   4篇
  2009年   10篇
  2008年   6篇
  2007年   4篇
  2006年   1篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有185条查询结果,搜索用时 15 毫秒
131.
A new relationship is introduced between impact sensitivity of energetic compounds and their activation energies of thermal decomposition. In this relationship, the impact sensitivity of an energetic compound with general formula CaHbNcOd is a function of its activation energy of thermal decomposition as well as the ratio of \( \left( {\frac{{n_{\text{H}} }}{{n_{\text{O}} }}} \right) \) and the contribution of specific molecular structural parameters. The new correlation can help us to elucidate the mechanism of initiation of energetic materials by impact. It can be used to predict the magnitude of impact sensitivity of new energetic materials. The new correlation has the root mean square and the average deviations of 2.22 and 1.79 J, respectively, for 40 energetic compounds with different molecular structures. The proposed new method is also tested for 11 energetic compounds, which have complex molecular structures, e.g., 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowurtzitane and 1,3,7,9-tetranitrophenoxazine.  相似文献   
132.
The kinetics of the Griess reaction in which 3‐nitroaniline acts as a nitrosation agent and 1‐naphtylamine as a coupling reagent was studied by chemometrics methods. The kinetic reaction was investigated under pH 1.0 and 25°C by UV‐vis spectrophotometry. The concentrations of nitrite, 3‐nitroaniline and 1‐naphtylamine were such that a second‐order kinetic reaction took place. Data explorations based on principal component analysis and multivariate curve resolution–alternating least squares were performed to obtain information about the reaction. Calculation of band boundaries of the multivariate curve resolution–alternating least squares solutions showed that the rotational ambiguities associated with the calculation of spectra and concentration profiles have been completely removed. The decrease in the ambiguity of the recovered solutions was closely related to the application of the equality constraint. The results of the exploratory data analysis showed that the kinetic reaction proceeds through a two‐step mechanism. Moreover, the two‐steps are second order. Data analysis approaches based on hard modeling and global hard modeling were used to resolve profiles of the reactants, intermediates and products and to evaluate the rate constants. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
133.
An efficient catalytic system using 1‐benzyl‐4‐aza‐1‐azoniabicyclo[2.2.2]octane chloride ((BeDABCO)2Pd2Cl6) was developed for the Hiyama cross‐coupling reaction of various aryl halides with triethoxy(phenyl)silane. The substituted biaryls were produced in excellent yields in short reaction times using a catalytic amount of this catalyst in NMP at 100 °C. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
134.
A practical and simple approach for the one‐pot multicomponent synthesis of indenopyrazolones is described via the condensation of ninhydrin (indan‐1,2,3‐trione), phenylhydrazine, and various aldehydes in the presence of MMT@Fe3O4 as an environmentally benign core/shell nanocomposite catalyst. The catalyst could be recycled using an external magnet easily and reused several times without remarkable loss of its catalytic activity. Furthermore, avoiding hazardous solvents, reusability of the catalyst, easy work‐up, short reaction times, room temperature, and mild reaction conditions are the advantages of this new eco‐friendly protocol.  相似文献   
135.
Due to the small sample size of data available in medical research and the levels of uncertainty and ambiguity associated with medical data, some researchers have employed fuzzy regression models to find the relationship between outcomes and explanatory variables in medical decision-making. The advantages of regression models are their ability to handle small sample sizes while fuzzy logic can model vagueness, thus making fuzzy regression a popular model among researchers. In addition, the high levels of uncertainty in medical data encourage the use of type-2 fuzzy which is capable of handling such uncertainty. The current paper proposes an interval type-2 fuzzy regression model for predicting retinopathy in diabetic patients. The results of the present work shall prevent unnecessary testing of diabetic patient. This study also aims to assist patients and the healthcare community to reduce the cost of diabetes control and treatment by optimizing the number of check-ups.  相似文献   
136.
The substitution effect of various functional groups such as –NO2, –CN, –N3, –NF2, and –NH2 on the density of tetrazolium nitrate salts is investigated through multiple linear regression method. The methodology of this work introduces a new model, which related density of tetrazolium nitrate salts to the number of fluorine and nitrogen atoms, the presence of NF2 groups, NO2 groups, as well as CH3 groups in the structural formula. The new reliable correlation shows that the NF2 and NO2 group can cause increasing the density of tetrazolium nitrate salts, especially NO2, whereas the CH3 group can decrease their density. The new proposed relationship has good reliability and predictability, so it can be used to design new rich nitrogen compounds based on tetrazolium nitrate salts as green energetic materials. These results are also tested for N,N′‐azo‐1,2,4‐triazolium nitrate salts, which is caused to derive another correlation. This correlation shows that the presence of NF2 functional groups increases the density of N,N′‐azo‐1,2,4‐triazolium nitrate salts as well as the value of nO/nC.  相似文献   
137.
Cyanide is a hazardous and detrimental chemical that causes the inactivation of the respiration system through the inactivation of cytochrome c oxidase. Because of the limitation in the number of cyanide-degrading enzymes, there is a great demand to design and introduce new enzymes with better functionality. This study developed an integrated method of protein-homology-modelling and ligand-docking protein-design approaches that reconstructs a better active site from cyanide hydratase (CHT) structure. Designing a mutant CHT (mCHT) can improve the CHT performance. A computational design procedure that focuses on mutation for constructing a new model of cyanide hydratase with better activity was used. In fact, this study predicted the three-dimensional (3D) structure of CHT for subsequent analysis. Inducing mutation on CHT of Trichoderma harzianum was performed and molecular docking was used to compare protein interaction with cyanide as a ligand in both CHT and mCHT. By combining multiple designed mutations, a significant improvement in docking for CHT was obtained. The results demonstrate computational capabilities for enhancing and accelerating enzyme activity. The result of sequence alignment and homology modeling show that catalytic triad (Cys-Glu-Lys) was conserved in CHT of Trichoderma harzianum. By inducing mutation in CHT structure, MolDock score enhanced from −18.1752 to −23.8575, thus the nucleophilic attack can occur rapidly by adding Cys in the catalytic cavity and the total charge of protein in pH 6.5 is increased from −6.0004 to −5.0004. Also, molecular dynamic simulation shows a stable protein-ligand complex model. These changes would help in the cyanide degradation process by mCHT.  相似文献   
138.
As promising materials for the reduction of greenhouse gases, transition-metal carbides, which are highly active in the hydrogenation of CO2, are mainly considered. In this regard, the reaction mechanism of CO2 hydrogenation to useful products on the Nb-terminated NbC (111) surface is investigated by applying density functional theory calculations. The computational results display that the formation of CH4, CH3OH, and CO are more favored than other compounds, where CH4 is the dominant product. In addition, the findings from reaction energies reveal that the preferred mechanism for CO2 hydrogenation is thorough HCOOH*, where the largest exothermic reaction energy releases during the HCOOH* dissociation reaction (2.004 eV). The preferred mechanism of CO2 hydrogenation towards CH4 production is CO2*→t,c-COOH*→HCOOH*→HCO*→CH2O*→CH2OH*→CH2*→CH3*→CH4*, where CO2*→t,c-COOH*→HCOOH*→HCO*→CH2O*→CH2OH*→CH3OH* and CO2*→t,c-COOH*→CO* are also found as the favored mechanisms for CH3OH and CO productions thermodynamically, respectively. During the mentioned mechanisms, the hydrogenation of CH2O* to CH2OH* has the largest endothermic reaction energy of 1.344 eV.  相似文献   
139.
Designing a supply chain network (SCN) is an important issue for organizations in competitive markets. In this paper, a novel robust SCN that considers the efficiencies and costs simultaneously is proposed. In order to estimate the efficiency of the producers and distributors, data envelopment analysis (DEA) model is incorporated into SCN. Moreover, to handle the uncertainty in data, a scenario-based robust optimization approach is applied. The proposed model finds out the efficient location of producers and distributors and determines the amount of purchases from each supplier in uncertain conditions. To illustrate the application of the proposed model, a numerical example is solved and results are analyzed.  相似文献   
140.
In this paper, the influence of various vacancy defects on the critical buckling loads and strains in carbon nanotubes under axial compression is investigated via a new structural model in ABAQUS software. The necessity of desirable conditions and expensive tests for experimental methods, in addition to the time expenditure required for atomic simulations, are the motivation for this work, which, in addition to yielding accurate results, avoids the obstacles of the previous methods. In fact, this model is a combination of other structural models designed to eliminate the deficiencies inherent in individual approaches. Because the present model is constructed in the CAE space of ABAQUS, there is no need to program for different loading and boundary conditions. A nonlinear connector is considered for modeling of stretching and torsional interactions, and a nonlinear spring is used for modeling of the angle variation interactions. A Morse potential is employed for stretching and bending potentials, and a periodic type of bond torsion is used for torsion interactions. The effect of different types of vacancy defects at various locations on the critical buckling loads and strains is studied for zigzag and armchair nanotubes with various aspect ratios (Length/Diameter). Comparison of our results with those of buckling of shells with cutouts indicates that vacancy defects in the carbon nanotubes can most likely be modeled as cutouts of the shells. Finally, results of the present structural model are compared with those from molecular dynamics (MD) simulation and show good agreement between our model and the MD model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号