首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1257篇
  免费   36篇
  国内免费   7篇
化学   896篇
晶体学   13篇
力学   17篇
数学   153篇
物理学   221篇
  2022年   8篇
  2021年   5篇
  2020年   9篇
  2019年   10篇
  2018年   5篇
  2017年   18篇
  2016年   26篇
  2015年   18篇
  2014年   26篇
  2013年   64篇
  2012年   46篇
  2011年   78篇
  2010年   37篇
  2009年   49篇
  2008年   67篇
  2007年   88篇
  2006年   81篇
  2005年   92篇
  2004年   78篇
  2003年   58篇
  2002年   64篇
  2001年   17篇
  2000年   22篇
  1999年   20篇
  1998年   13篇
  1997年   18篇
  1996年   14篇
  1995年   7篇
  1994年   8篇
  1992年   16篇
  1991年   8篇
  1990年   9篇
  1989年   10篇
  1988年   10篇
  1987年   8篇
  1986年   4篇
  1985年   18篇
  1984年   17篇
  1983年   12篇
  1982年   16篇
  1981年   12篇
  1980年   19篇
  1979年   16篇
  1978年   9篇
  1977年   7篇
  1976年   9篇
  1975年   14篇
  1974年   9篇
  1973年   8篇
  1971年   4篇
排序方式: 共有1300条查询结果,搜索用时 0 毫秒
71.
A core-shell composite consisting of a palladium (Pd) nanoparticle and a hollow carbon shell (Pd@hmC) was employed as a catalyst for aerobic oxidation of various alcohols. The core-shell structure was synthesized by consecutive coatings of Pd nanoparticles with siliceous and carbon layers followed by removal of the intermediate siliceous layer. Structural characterizations using TEM and N(2) adsorption-desorption measurements revealed that Pd@hmC thus-obtained was composed of a Pd nanoparticle core of 3-6 nm in diameter and a hollow carbon shell with well-developed mesopore (ca. 2.5 nm in diameter) and micropore (ca. 0.4-0.8 nm in diameter) systems. When compared to some Pd-supported carbons, Pd@hmC showed a high level of catalytic activity for oxidation of benzyl alcohol into benzaldehyde using atmospheric pressure of O(2) as an oxidant. The Pd@hmC composite also exhibited a high level of catalytic activity for aerobic oxidations of other primary benzylic and allylic alcohols into corresponding aldehydes. The presence of a well-developed pore system in the lateral carbon shell enabled efficient diffusion of both substrates and products to reach the central Pd nanoparticles, leading to such high catalytic activities. This core-shell structure also provided high thermal stability of Pd nanoparticles toward coalescence and/or aggregation due to the physical isolation of each Pd nanoparticle from neighboring particles by the carbon shell: this specific property of Pd@hmC resulted in possible regeneration of catalytic activity for these aerobic oxidations by a high-temperature heat treatment of the sample recovered after catalytic reactions.  相似文献   
72.
A reaction of a 2‐(imidazol‐1‐yl)methyl‐6‐(pyrazol‐3‐yl)pyridine with [RuCl2(PPh3)3] resulted in tautomerization of the imidazole unit to afford the unsymmetrical pincer‐type ruthenium complex 2 containing a protic pyrazole and N‐heterocyclic carbene (NHC) arms. Deprotonation of 2 with one equivalent of a base led to the formation of the NHC–pyrazolato complex 3 , indicating that the protic NHC arm is less acidic. When 2 was treated with two equivalents of a base under H2 or in 2‐propanol, the hydrido complex 4 containing protic NHC and pyrazolato groups was obtained through metal–ligand cooperation.  相似文献   
73.
It remains a big challenge to remarkably improve both oxygen reduction reaction (ORR) activity and long‐term durability of Pt?M bimetal electrocatalysts simultaneously in the harsh cathode environment toward widespread commercialization of polymer electrolyte fuel cells (PEFC). In this account we found double‐promotional effects of carbon micro coil (CMC) support on ORR performance and durability of octahedral Pt3Ni nanoparticles (Oh Pt3Ni/CMC). The Oh Pt3Ni/CMC displayed remarkable improvements of mass activity (MA; 13.6 and 34.1 times) and surface specific activity (SA; 31.3 and 37.0 times) compared to those of benchmark Pt/C (TEC10E20E) and Pt/C (TEC10E50E‐HT), respectively. Notably, the Oh Pt3Ni/CMC revealed a negligible MA loss after 50,000 triangular‐wave 1.0–1.5 VRHE (startup/shutdown) load cycles, contrasted to MA losses of 40 % (TEC10E20E) and 21.5 % (TEC10E50E‐HT) by only 10,000 load cycles. It was also found that the SA increased exponentially with the decrease in the CO stripping peak potential in a series of Pt?M/carbon (M: Ni and Co), which predicts a maximum SA at the curve asymptote. Key factors for simultaneous improvements of performance and durability of core‐shell Pt3Ni/carbon electrocatalysts toward superior PEFC is also discussed.  相似文献   
74.
Hydrogenation and protonation of parent imido complexes have attracted much attention in relation to industrial and biological nitrogen fixation. The present study reports the structure and properties of the highly unsaturated diiridium parent imido complex [(Cp*Ir)(2)(μ(2)-H)(μ(2)-NH)](+) derived from deprotonation of a parent amido complex. Because of the Lewis acid-Br?nsted base bifunctional nature of the metal-NH bond, the parent imido complex promotes heterolysis of H(2) and deprotonative N-H cleavage of ammonia to afford the corresponding parent amido complexes under mild conditions.  相似文献   
75.
The excited state characteristics of phenylene (Ph)-bridged periodic mesoporous organosilica (PMO) powders with crystal-like and amorphous wall structures are investigated. Crystal-like Ph-PMO has a molecular ordering of the bridging organic moieties with intervals of 0.76 and 0.44 nm parallel and perpendicular to the mesochannel direction, respectively, whereas amorphous Ph-PMO has no molecular-level periodicity in the wall. Fluorescence from the exciton and excimer of the Ph moieties and the defect center in the silicate network were detected at room temperature, but fluorescence from the excimer and the defect center were not detected at 77 K for crystal-like Ph-PMO dispersed in a methanol/ethanol mixed solvent. The decay curve of the exciton fluorescence of crystal-like Ph-PMO at room temperature was analyzed successfully using a one-dimensional diffusion model quenched by the defect center and the excimer site. The results were discussed in comparison with those for the crystal-like biphenylene-bridged PMO reported in the preceding paper (Yamanaka et al., Phys. Chem. Chem. Phys., 2010, 12, 11688-11696). The existence of excited states with various conformations including ground state dimers or aggregates of the Ph moieties was suggested for amorphous Ph-PMO. It was clearly apparent that the differences in the excited state dynamics reflected the differences in the molecular-level structure in the wall.  相似文献   
76.
The first total synthesis of (+)-macquarimicin A (1), a novel inhibitor of neutral sphingomyelinase (N-SMase) with antiinflammatory activity, has been accomplished. The present work determined the absolute configuration of (+)-1 and revised the C(2)-C(3) geometry to be Z. The synthesis features a transannular Diels-Alder reaction, which constructed the tetracyclic framework stereoselectively, and a convergent and efficient synthetic pathway, which afforded (+)-macquarimicin A (1) in 27 steps (longest linear sequence) with 9.9% overall yield.  相似文献   
77.
Phosphorescence studies of a series of facial homoleptic cyclometalated iridium(III) complexes have been carried out. The complexes studied have the general structure Ir(III)(C-N)(3), where (C-N) is a monoanionic cyclometalating ligand: 2-(5-methylthiophen-2-yl)pyridinato, 2-(thiophen-2-yl)-5-trifluoromethylpyridinato, 2,5-di(thiophen-2-yl)pyridinato, 2,5-di(5-methylthiophen-2-yl)pyridinato, 2-(benzo[b]thiophen-2-yl)pyridinato, 2-(9,9-dimethyl-9H-fluoren-2-yl)pyridinato, 1-phenylisoquinolinato, 1-(thiophen-2-yl)isoquinolinato, or 1-(9,9-dimethyl-9H-fluoren-2-yl)isoquinolinato. Luminescence properties of all the complexes at 298 K in toluene are as follows: quantum yields of phosphorescence Phi(p) = 0.08-0.29, emission peaks lambda(max) = 558-652 nm, and emission lifetimes tau = 0.74-4.7 micros. Bathochromic shifts of the Ir(thpy)(3) family [the complexes with 2-(thiophen-2-yl)pyridine derivatives] are observed by introducing appropriate substituents, e.g., methyl, trifluoromethyl, or thiophen-2-yl. However, Phi(p) of the red emissive complexes (lambda(max) > 600 nm) becomes small, caused by a significant decrease of the radiative rate constant, k(r). In contrast, the complexes with the 1-arylisoquinoline ligands are found to have marked red shifts of lambda(max) and very high Phi(p) (0.19-0.26). These complexes are found to possess dominantly (3)MLCT (metal-to-ligand charge transfer) excited states and have k(r) values approximately 1 order of magnitude larger than those of the Ir(thpy)(3) family. An organic light-emitting diode (OLED) device that uses Ir(1-phenylisoquinolinato)(3) as a phosphorescent dopant produces very high efficiency (external quantum efficiency eta(ex) = 10.3% and power efficiency 8.0 lm/W at 100 cd/m(2)) and pure-red emission with 1931 CIE (Commission Internationale de L'Eclairage) chromaticity coordinates (x = 0.68, y = 0.32).  相似文献   
78.
Protonation of parent azulene (1), homoazulene (8), representative isomeric benzazulenes (9, 9A, and 9B), and benzohomoazulenes (10, 10A, and 10B) as well as the mono- and diprotonation of isomeric azulenoazulenes (11-16) were studied by DFT at the B3LYP/6-31G(d) level. The most likely carbocations were identified based on relative protonation energies. For comparison, complete experimental 13C NMR data were obtained for parent azulenium ion 1H+ and guaiazulenium ion 2H+ in TFA. The oxidation dications derived from benzazulenes (9, 9A, and 9B), benzohomoazulenes (10, 10A, and 10B) and azulenoazulenes (11, 16) were also investigated. For azulenoazulene dications the singlet and triplet states are both minima, but except for 11(2+) and 13(2+), the triplet states are higher in energy. Structural/geometrical changes in the carbocations were examined. GIAO-NMR, NPA charges (and changes in charges), and NICS (and delta NICS) were employed to compute the NMR chemical shifts (delta delta 13C values) in order to derive charge delocalization maps and to gauge relative aromaticitylantiaromaticity in the energetically most favored carbocations and oxidation dications. The emerging trends are discussed and compared. Creation of tropylium or homotropylium entities in the carbocations (monoprotonated) and carbodications (diprotonated) is identified as an important driving force governing the protonation outcomes. Consideration of the AM1-derived delta delta Hf values (and the DFT-derived delta delta G values) suggests that the two-electron oxidation of azulenoazulenes should be experimentally feasible. Given their antiaromatic (paratropic) character, azulenoazulene dications represent interesting targets for NMR study. GIAO-derived charge delocalization mapping allows the most likely sites for nucleophilic attack on the dications to be identified.  相似文献   
79.
Hirano T  Oi T  Nagao H  Morokuma K 《Inorganic chemistry》2003,42(20):6575-6583
cis-[Ru(NO)Cl(pyca)(2)] (pyca = 2-pyridinecarboxylato), in which the two pyridyl nitrogen atoms of the two pyca ligands coordinate at the trans position to each other and the two carboxylic oxygen atoms at the trans position to the nitrosyl ligand and the chloro ligand, respectively (type I shown as in Chart 1), reacted with NaOCH(3) to generate cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I). The geometry of this complex was confirmed to be the same as the starting complex by X-ray crystallography: C(13.5)H(13)N(3)O(6.5)Ru; monoclinic, P2(1)/n; a = 8.120(1), b = 16.650(1), c = 11.510(1) A; beta = 99.07(1) degrees; V = 1536.7(2) A(3); Z = 4. The cis-trans geometrical change reaction occurred in the reactions of cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I) in water and alcohol (ROH, R = CH(3), C(2)H(5)) to form [[trans-Ru(NO)(pyca)(2)](2)(H(3)O(2))](+) (type V) and trans-[Ru(NO)(OR)(pyca)(2)] (type V). The reactions of the trans-form complexes, trans-[Ru(NO)(H(2)O)(pyca)(2)](+) (type V) and trans-[Ru(NO)(OCH(3))(pyca)(2)] (type V), with Cl(-) in hydrochloric acid solution afforded the cis-form complex, cis-[Ru(NO)Cl(pyca)(2)] (type I). The favorable geometry of [Ru(NO)X(pyca)(2)](n)(+) depended on the nature of the coexisting ligand X. This conclusion was confirmed by theoretical, synthetic, and structural studies. The mono-pyca-containing nitrosylruthenium complex (C(2)H(5))(4)N[Ru(NO)Cl(3)(pyca)] was synthesized by the reaction of [Ru(NO)Cl(5)](2)(-) with Hpyca and characterized by X-ray structural analysis: C(14)H(24)N(3)O(3)Cl(3)Ru; triclinic, Ponemacr;, a = 7.631(1), b = 9.669(1), c = 13.627(1) A; alpha = 83.05(2), beta = 82.23(1), gamma = 81.94(1) degrees; V = 981.1(1) A(3); Z = 2. The type II complex of cis-[Ru(NO)Cl(pyca)(2)] was synthesized by the reaction of [Ru(NO)Cl(3)(pyca)](-) or [Ru(NO)Cl(5)](2)(-) with Hpyca and isolated by column chromatography. The structure was determined by X-ray structural analysis: C(12)H(8)N(3)O(5)ClRu; monoclinic, P2(1)/n; a = 10.010(1), b = 13.280(1), c = 11.335(1) A; beta = 113.45(1) degrees; V = 1382.4(2) A(3); Z = 4.  相似文献   
80.
A ternary catalyst system of Cp*RuCl(cod)-2-diphenylphosphinoethylamine-KOt-Bu (Cp*=η5-C5(CH3)5, cod=1,5-cyclooctadiene) causes rapid racemization of chiral non-racemic sec-alcohols, which results from the reversible hydrogen transfer between sec-alcohols and ketones. Both tertiary phosphine and primary amine functionalities in the ligand are responsible for the high rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号