首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   563篇
  免费   21篇
  国内免费   2篇
化学   364篇
晶体学   8篇
力学   9篇
数学   75篇
物理学   130篇
  2023年   3篇
  2021年   12篇
  2020年   10篇
  2019年   9篇
  2018年   8篇
  2017年   7篇
  2016年   15篇
  2015年   17篇
  2014年   17篇
  2013年   25篇
  2012年   26篇
  2011年   38篇
  2010年   23篇
  2009年   24篇
  2008年   31篇
  2007年   30篇
  2006年   38篇
  2005年   27篇
  2004年   34篇
  2003年   15篇
  2002年   21篇
  2001年   16篇
  2000年   10篇
  1999年   6篇
  1998年   8篇
  1997年   10篇
  1996年   6篇
  1995年   6篇
  1993年   4篇
  1992年   8篇
  1991年   4篇
  1989年   2篇
  1988年   7篇
  1987年   3篇
  1986年   11篇
  1985年   2篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1979年   5篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1968年   3篇
  1967年   3篇
  1963年   1篇
排序方式: 共有586条查询结果,搜索用时 187 毫秒
141.
142.
In this article, we consider the maximum cocliques of the 211: M24 ‐graph Λ. We show that the maximum cocliques of size 24 of Λ can be obtained from two Hadamard matrices of size 24, and that there are exactly two maximum cocliques up to equivalence. We verify that the two nonisomorphic designs with parameters 5‐(24,9,6) can be constructed from the maximum cocliques of Λ, and that these designs are isomorphic to the support designs of minimum weights of the ternary extended quadratic residue and Pless symmetry [24,12,9] codes. Further, we give a new construction of Λ from these 5‐(24,9,6) designs. © 2009 Wiley Periodicals, Inc. J Combin Designs 17: 323–332, 2009  相似文献   
143.
The crosslinked polystyrene particles possessing photofunctional N,N‐diethyldithiocarbamate groups on their surface were prepared by free‐radical emulsion copolymerization of a mixture of styrene, divinylbenzene and 4‐vinylbenzyl N,N‐diethyldithiocarbamate with redox system as an initiator under UV irradiation. In this copolymerization, the inimer 4‐vinylbenzyl N,N‐diethyldithiocarbamate acted the formation of hyperbranched structures by living radical photopolymerization. The particle sizes (number‐average particle diameter = 214–523 nm) were controlled by varying the feed amount of surfactant and size distributions were relatively narrow. Subsequently, core–shell particles were synthesized by photoinduced atom transfer radical polymerization approach of methyl methacrylate initiated by photofunctional polystyrene particles as a macroinitiator. Such core–shell particles were stabilized sterically by grafted chains in organic solvents. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1771–1777, 2007  相似文献   
144.
A metal-free photoredox-catalyzed hydrodefluorination of fluoroarenes was achieved by using N,N,N’,N’-tetramethyl-para-phenylenediamine ( 1 ) as a strong photoreduction catalyst. This reaction was applicable not only to electron-rich monofluoroarenes but also to polyfluoroarenes to afford non-fluorinated arenes. The experimental mechanistic studies indicated that the amide solvent NMP plays an important role for regeneration of the photocatalyst, enabling additive-free photoreduction catalysis.  相似文献   
145.
A facile method to prepare one-dimensional (1D) organometallic nanomaterials from various ethynyl-substituted molecules is reported. The reactions of 3-chloro-1-ethynylbenzene, p-tBu-phenylacetylene and 4-ethynylbiphenyl with Cu+ ions in acetonitrile yield nanorod-shaped copper acetylides (Cu−C≡C−R) crystals. In the case of linear alkynes, namely, propyne, 1-pentyne and 1-hexyne, it was found that using an aqueous ammonia/ethanol mixed solvent instead of acetonitrile is a better approach to obtain 1D nanostructures. This procedure also enables us to prepare functional 1D nanomaterials. We demonstrate the preparation of a paramagnetic nanorod from the organic radical p-ethynylphenyl nitronyl nitroxide, and fluorescent nanorods from 9-ethynylphenanthrene and 2-ethynyl-9,9′-spirobifluorene.  相似文献   
146.
147.
Photochemical CO2 reduction catalysed by trans(Cl)–Ru(bpy)(CO)2Cl2 (bpy = 2,2′-bipyridine) efficiently produces carbon monoxide (CO) and formate (HCOO) in N,N-dimethylacetamide (DMA)/water containing [Ru(bpy)3]2+ as a photosensitizer and 1-benzyl-1,4-dihydronicotinamide (BNAH) as an electron donor. We have unexpectedly found catalyst concentration dependence of the product ratio (CO/HCOO) in the photochemical CO2 reduction: the ratio of CO/HCOO decreases with increasing catalyst concentration. The result has led us to propose a new mechanism in which HCOO is selectively produced by the formation of a Ru(i)–Ru(i) dimer as the catalyst intermediate. This reaction mechanism predicts that the Ru–Ru bond dissociates in the reaction of the dimer with CO2, and that the insufficient electron supply to the catalyst results in the dominant formation of HCOO. The proposed mechanism is supported by the result that the time-course profiles of CO and HCOO in the photochemical CO2 reduction catalysed by [Ru(bpy)(CO)2Cl]2 (0.05 mM) are very similar to those of the reduction catalysed by trans(Cl)–Ru(bpy)(CO)2Cl2 (0.10 mM), and that HCOO formation becomes dominant under low-intensity light. The kinetic analyses based on the proposed mechanism could excellently reproduce the unusual catalyst concentration effect on the product ratio. The catalyst concentration effect observed in the photochemical CO2 reduction using [Ru(4dmbpy)3]2+ (4dmbpy = 4,4′-dimethyl-2,2′-bipyridine) instead of [Ru(bpy)3]2+ as the photosensitizer is also explained with the kinetic analyses, reflecting the smaller quenching rate constant of excited [Ru(4dmbpy)3]2+ by BNAH than that of excited [Ru(bpy)3]2+. We have further synthesized trans(Cl)–Ru(6Mes-bpy)(CO)2Cl2 (6Mes-bpy = 6,6′-dimesityl-2,2′-bipyridine), which bears bulky substituents at the 6,6′-positions in the 2,2′-bipyridyl ligand, so that the ruthenium complex cannot form the dimer due to the steric hindrance. We have found that this ruthenium complex selectively produces CO, which strongly supports the catalytic mechanism proposed in this work.  相似文献   
148.
Mesoporous SiO2–TiO2 was synthesized by the sol–gel method using Si(OC2H5)4, Ti(OC2H5)4, and stearyltrimethylammonium chloride. By using acetylacetone as the capping agent of Ti(OC2H5)4, homogeneous SiO2–TiO2 composite was obtained. Spherical mesoporous SiO2–TiO2 was also synthesized by the sol–gel method using W/O emulsion under microwave irradiation. The specific surface area of these mesoporous SiO2–TiO2 materials decreased when the Ti/Si molar ratio was higher than 0.1, which indicated that Ti was homogeneously distributed in mesoporous SiO2 matrix at Ti/Si ≦ 0.1. The photocatalytic activity of mesoporous SiO2–TiO2 materials was investigated by the degradation of methylene-blue in water under UV light irradiation. Mesoporous SiO2–TiO2 was effective for the adsorption–decomposition of methylene-blue.  相似文献   
149.
Bisubstrate-type inhibitors for N-acetylglucosaminyltransferase (GnT)-V and -IX were designed and synthesized. These compounds carry both an acceptor trisaccaride and an UDP-GlcNAc component tethered by a linker of variable length. The acceptor trisaccharide unit was constructed using a combination of a polymer support and a resin capture-release strategy. Namely, starting with a beta-mannoside bound to low molecular weight monomethyl PEG (MPEG), successive glycosylations with donors having chloroacetyl group produced the trisaccharide, which was subjected to the capture-release purification using cysteine loaded resin. UDP-GlcNAc units carrying phosphate moieties were separately synthesized from the bromoacetamide-containing glucosamine derivative. Ligation between the acceptor thiol and each alkyl bromide on the donor unit readily proceeded, and produced the coupling product. The introduction of the UMP component gave target compounds. All of the synthesized compounds had significant activities to GnT-V and -IX. Their potencies were dependent upon the linkers length. GnT-IX was more sensitive to these inhibitors and optimum linker length was clearly different between these GnTs. The most potent inhibitor of GnT-V had Ki=18.3 microM, while that of GnT-IX had Ki = 4.7 microM.  相似文献   
150.
A pulse radiolysis study of the formation and decay of the triplet excited state of liquid pyridine has been performed using quenching techniques. The pyridine triplet excited state is observed with an absorption band at lambda = 310 nm and has a first-order decay with a lifetime of 72 ns. Stern-Volmer plots of the quenching of the pyridine triplet excited state with anthracene, naphthalene, and biphenyl give its yield to be 1.3 molecules/100 eV. This value is very similar to the previously determined yield of 1.25 molecules/100 eV for dipyridyl, the predominant condensed-phase product in the gamma-radiolysis of liquid pyridine. The rate coefficient for pyridine triplet excited-state scavenging by oxygen is estimated to be 6.6 x 10(9) M(-1) s(-1). Oxygen may also scavenge the electron precursor to the pyridine triplet excited state, whereas nitrous oxide is observed to have little effect. A pyridyl radical-pyridine (dimer) complex produced in the pulse radiolysis of neat liquid pyridine is detected at lambda = 390 nm and is consistent with iodine scavenging effects. Formation of the pyridiniumyl radical cation-pyridine charge-transfer complex is proposed to be insignificant in liquid pyridine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号