首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   6篇
化学   136篇
力学   4篇
数学   2篇
物理学   36篇
  2023年   2篇
  2022年   5篇
  2021年   1篇
  2020年   7篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   5篇
  2014年   8篇
  2013年   8篇
  2012年   9篇
  2011年   10篇
  2010年   8篇
  2009年   6篇
  2008年   15篇
  2007年   16篇
  2006年   5篇
  2005年   16篇
  2004年   5篇
  2003年   12篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   7篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
排序方式: 共有178条查询结果,搜索用时 15 毫秒
171.
We investigate chaotic phase synchronization (CPS) observed in a mutually coupled map system and a forced map oscillator by using return maps (RM) of phase difference. RM visualizes the presence or absence of the channel for phase slip which characterizes the onset of CPS. It is found that CPS occurs when the channel starts to be completely closed, and that the saddle node point is approximately equal to the point at which the channel is closed on the average. Furthermore, the proposed RM describes the critical characteristics of the phase difference and reveals the existence of the quasi-synchronized state below the synchronization point.  相似文献   
172.
The solvation structure of the lithium ion in room-temperature ionic liquids 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide (EMI(+)TFSI(-)) and N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (BMP(+0TFSI(-)) has been studied by Raman spectroscopy and DFT calculations. Raman spectra of EMI(+)TFSI(-) and BMP(+)TFSI(-) containing Li(+)TFSI(-) over the range 0.144-0.589 and 0.076-0.633 mol dm(-3), respectively, were measured at 298 K. A strong 744 cm-1 band of the free TFSI(-) ion in the bulk weakens with increasing concentration of the lithium ion, and it revealed by analyzing the intensity decrease that the two TFSI(-) ions bind to the metal ion. The lithium ion may be four-coordinated through the O atoms of two bidentate TFSI(-) ions. It has been established in our previous work that the TFSI(-) ion involves two conformers of C(1) (cis) and C(2) (trans) symmetries in equilibrium, and the dipole moment of the C(1) conformer is significantly larger than that of the C(2) conformer. On the basis of these facts, the geometries and SCF energies of possible solvate ion clusters [Li(C(1)-TFSI(-))(2)](-), [Li(C(1)-TFSI(-))(C(2)-TFSI(-))](-), and [Li(C(2)-TFSI(-))(2)](-) were examined using the theoretical DFT calculations. It is concluded that the C(1) conformer is more preferred to the C(2) conformer in the vicinity of the lithium ion.  相似文献   
173.
Room temperature ionic liquids (ILs) are stable liquids composed of anions and cations. 1-ethyl-3-methyl-imidazolium (EMIm, EMI) is a popular and important cation that produces thermally stable ILs with various anions. In this study two amide-type anions, bis(trifluoro-methanesulfonyl)amide [N(SO(2)CF(3))(2), TFSA, TFSI, NTf(2), or Tf(2)N] and bis(fluorosulfonyl)amide [(N(SO(2)F)(2), FSA, or FSI] were investigated by multinuclear NMR spectroscopy. In addition to EMIm-TFSA and EMIm-FSA, lithium-salt-doped binary systems were prepared (EMIm-TFSA-Li and EMIm-FSA-Li). The spin-lattice relaxation times (T(1)) were measured by (1)H, (19)F, and (7)Li NMR spectroscopy and the correlation times of (1)H NMR, τ(c)(EMIm) (8 × 10(-10) to 3 × 10(-11) s) for the librational molecular motion of EMIm and those of (7)Li NMR, τ(c)(Li) (5 × 10(-9) to 2 × 10(-10) s) for a lithium jump were evaluated in the temperature range between 253 and 353 K. We found that the bulk viscosity (η) versus τ(c)(EMIm) and cation diffusion coefficient D(EMIm) versus the rate 1/τ(c)(EMIm) have good relationships. Similarly, linear relations were obtained for the η versus τ(c)(Li) and the lithium diffusion coefficient D(Li) versus the rate 1∕τ(c)(Li). The mean one-jump distances of Li were calculated from τ(c)(Li) and D(Li). The experimental values for the diffusion coefficients, ionic conductivity, viscosity, and density in our previous paper were analyzed by the Stokes-Einstein, Nernst-Einstein, and Stokes-Einstein-Debye equations for the neat and binary ILs to clarify the physicochemical properties and mobility of individual ions. The deviations from the classical equations are discussed.  相似文献   
174.
175.
Selective monolithiation of dibromobiaryls, such as 2,2'-dibromobiphenyl, 4,4'-dibromobiphenyl, 2,7-dibromo-9,9-dioctylfluorene, 2,2'-dibromo-1,1'-binaphthyl, and 5,5'-dibromo-2,2'-bithiophene, with 1 equiv of n-butyllithium followed by the reaction with electrophiles was achieved using a microflow system by virtue of fast micromixing and precise temperature control. Sequential introduction of two different electrophiles based on this method was also achieved using a microflow system composed of four micromixers and four microtube reactors.  相似文献   
176.
Morphology control of poly(ether ketone) (PEK) was examined by using the crystallization during the nucleophilic aromatic substitution reaction of potassium salt of 4-fluoro-4′-hydroxybenzophenone. Polymerizations were carried out at 290 °C. The PEK was obtained as precipitates and its morphology was highly influenced by the polymerization condition such as the solvent, the concentration and the polymerization time. High crystalline spindle-like crystals were obtained by the polymerization in diphenyl sulfone (DPS) at a concentration of 5.0% for 2 h with the yield of 86%. The average length and width were 1.4 μm and 300 nm respectively, and the maximum thickness was 130 nm. The surface was not smooth and it was hilly. The spindle-like crystal was likely consisted of multilayered lamellae comprised of the microcrystallites. The molecules were oriented perpendicular to the lamella. The polymerization in DPS at a higher concentration of 10.0% afforded the networks of nanofibres, of which the diameter was 100–250 nm. The obtained PEK precipitates possessed excellent thermal properties.  相似文献   
177.
Copolymerization of ethylene and 1,5-hexadiene (HD) by zirconocene catalysts proceeded via cyclization-addition mechanism to form 1,3-didsubstituted cyclopentane structure in the polyethylene chain. The 1,3-cyclopentane structure was found to be taken in the crystalline structure of polyethylene (isomorphism) by partially chainging the trans zigzag chain into gauche conformation, thereby, inducing a transformation of orthorhombic crystal to pseudohexagonal crystal. Copolymerization of ethylene and cyclopentene (CPE) by zirconocene catalysts yielded copolymers having 1,2-disubstituted cyclopentane structure in the polyethylene chain. The 1,2-cyclopentane structure was not taken into the crystalline structure of polyethylene. The melting point (Tm) and the crystallinity (Xc) of polyethylene decreased by copolymerization of HD or CPE, and the Tm- and Xc-decreasing effect of CPE was stronger than HD. For copolymers of propylene and HD or CPE obtained with isospecific zirconocene catalyst, the isomorphism was not ovserved.  相似文献   
178.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号