首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   0篇
化学   108篇
物理学   7篇
  2016年   5篇
  2015年   6篇
  2014年   3篇
  2013年   4篇
  2012年   5篇
  2011年   5篇
  2010年   10篇
  2009年   13篇
  2008年   7篇
  2007年   8篇
  2006年   6篇
  2005年   1篇
  2004年   5篇
  2003年   4篇
  2002年   5篇
  2001年   5篇
  2000年   6篇
  1999年   4篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1994年   3篇
  1991年   3篇
排序方式: 共有115条查询结果,搜索用时 0 毫秒
51.
 The title reaction was investigated in aqueous alkaline medium. A first order dependence on both [diperiodatonickelate(IV)] and [OH] and an apparent fractional order in [1,10-Phenanthroline] was obtained. Addition of the reaction product has no effect on the reaction. The effects of dielectric constant, ionic strength, and temperature on the rate of the reaction were studied. A mechanism based on the experimental results is proposed, and the constants involved in the mechanism were evaluated. A good agreement between the observed and calculated rate constants at varying experimental conditions was obtained.  相似文献   
52.
Alkaline hexacyanoferrate(III) oxidation of freshly prepared solutions of CrIII (pH>12) at 27°C follows the rate law, Equation 1:
  相似文献   
53.
54.
The kinetics of the osmium(VIII) (Os(VIII)) catalyzed oxidation of diclofenac sodium (DFS) by diperiodatocuprate(III) (DPC) in aqueous alkaline medium has been studied spectrophotometrically at a constant ionic strength of 1.0 mol⋅dm−3. The reaction showed first order kinetics in [Os(VIII)] and [DPC] and less than unit order with respect to [DFS] and [alkali]. The rate decreased with increase in [periodate]. The reaction between DFS and DPC in alkaline medium exhibits 1:2 [DFS]:[DPC] stoichiometry. However, the order in [DFS] and [OH] changes from first order to zero order as their concentration increases. Changes in the ionic strength and dielectric constant did not affect the rate of reaction. The oxidation products were identified by LC-ESI-MS, NMR, and IR spectroscopic studies. A possible mechanism is proposed. The reaction constants involved in the different steps of the mechanism were calculated. The catalytic constant (K C) was also calculated for Os(VIII) catalysis at the studied temperatures. From plots of log 10 K C versus 1/T, values of activation parameters have been evaluated with respect to the catalytic reaction. The activation parameters with respect to the slow step of the mechanism were computed and discussed, and thermodynamic quantities were also determined. The active osmium(VIII) and copper(III) periodate species have been identified.  相似文献   
55.
56.
Quinolinium dichromate (QDC) oxidation of TlI in aqueous AcOH containing large concentrations of HCl is considerably accelerated both by H+ and Cl ions as well as by increasing the AcOH concentration in the medium; oxidation is made possible by altering the redox potentials. The reaction is first order in oxidant and in reductant but apparently less than unit order in [Cl] and nearly second order in [H+]. The active species of QDC and TlI are ClCrO3 and TlCl2 respectively. A possible mechanism is proposed and verified, and the reaction constants involved have been evaluated.  相似文献   
57.
The kinetics of oxidation of pantothenic acid (PA), Me2C(CH2OH)CH(OH)C(O)NHCH2CH2CO2H, by cerium(IV) in aqueous HClO4 medium at constant ionic strength, 2.0 mol dm–3, has been studied spectrophotometrically. The reaction showed first-order kinetics in CeIV concentration, an apparent less than unit order dependence in [PA] and an inverse fractional order in [H+]. Initial addition of products had no significant effect on the rate of the reaction. A possible mechanism is proposed, and the reaction constants involved in the mechanism have been computed. There is good agreement between the observed and calculated rate constants under different experimental conditions. The activation parameters were calculated with respect to the slow step of the proposed mechanism.  相似文献   
58.
Summary Catalysis of the CeIV-allyl alcohol (AA) reaction in acid solution depends both on the of rate enhancement and product distribution on the catalyst used: OsVIII results mainly in acrolein, whereas PdII gives acrylic acid. The rate laws in the two cases also differ:viz., Equations 1 and 2K1 is the equilibrium constant of formation of the OsVIII-allyl alcohol complex and k1 is the rate constant of its oxidation by CeIV; K2 is the equilibrium constant for the formation of the CeIV-PdII-allyl alcohol complex and k2 is its rate constant of decomposition. Rate = K1k1[CeIV][AA][OsVIII]/(1+K1[AA]) (1) Rate = K1k1[CeIV][PdII]/(1+K2[CeIV]) (2)While OsVIII is effective in H2SO4 solution, aqueous HClO4 is needed for PdII. Both reactions proceed through formation of catalyst-allyl alcohol complexes with participation of free radicals. The details of these observations are discussed.  相似文献   
59.
60.
The kinetics of oxidation of AsIIIby Fe(CN)6 3– has been studied spectrophotometrically in 60% AcOH–H2O containing 4.0moldm–3HCl. The oxidation is made possible by the difference in redox potentials. The reaction is first order each in [Fe(CN)6 3–] and [AsIII]. Amongst the initially added products, Fe(CN)6 4– retards the reaction and AsVdoes not. Increasing the acid concentration at constant chloride concentration accelerates the reaction. At constant acidity increasing chloride concentration increases the reaction rate, which reaches a maximum and then decreases. H2Fe(CN)6 , is the active species of Fe(CN)6 3–, while AsCl5 2– in an ascending portion and AsCl2 + in a descending portion are considered to be the active species of AsIII. A suitable reaction mechanism is proposed and the reaction constants of the different steps involved have been evaluated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号