首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5818篇
  免费   118篇
  国内免费   33篇
化学   3264篇
晶体学   51篇
力学   185篇
数学   1061篇
物理学   1408篇
  2021年   34篇
  2020年   44篇
  2019年   49篇
  2018年   36篇
  2017年   36篇
  2016年   82篇
  2015年   74篇
  2014年   95篇
  2013年   259篇
  2012年   228篇
  2011年   319篇
  2010年   141篇
  2009年   122篇
  2008年   260篇
  2007年   242篇
  2006年   275篇
  2005年   248篇
  2004年   194篇
  2003年   185篇
  2002年   179篇
  2001年   139篇
  2000年   122篇
  1999年   81篇
  1998年   59篇
  1997年   76篇
  1996年   99篇
  1995年   87篇
  1994年   110篇
  1993年   118篇
  1992年   101篇
  1991年   97篇
  1990年   81篇
  1989年   91篇
  1988年   68篇
  1987年   80篇
  1986年   62篇
  1985年   107篇
  1984年   86篇
  1983年   55篇
  1982年   79篇
  1981年   81篇
  1980年   73篇
  1979年   78篇
  1978年   82篇
  1977年   64篇
  1976年   71篇
  1975年   68篇
  1974年   70篇
  1973年   104篇
  1972年   39篇
排序方式: 共有5969条查询结果,搜索用时 187 毫秒
991.
JPC – Journal of Planar Chromatography – Modern TLC - Bacopa monnieri (L.) Pennell, commonly known as Brahmi, is an important medicinal plant of the Ayurvedic System of Medicine and is...  相似文献   
992.
Disease or injury to articular cartilage results in loss of extracellular matrix components which can lead to the development of osteoarthritis (OA). To better understand the process of disease development, there is a need for evaluation of changes in cartilage composition without the requirement of extensive sample preparation. Near infrared (NIR) spectroscopy is a chemical investigative technique based on molecular vibrations that is increasingly used as an assessment tool for studying cartilage composition. However, the assignment of specific molecular vibrations to absorbance bands in the NIR spectrum of cartilage, which arise from overtones and combinations of primary absorbances in the mid infrared (MIR) spectral region, has been challenging. In contrast, MIR spectroscopic assessment of cartilage is well-established, with many studies validating the assignment of specific bands present in MIR spectra to specific molecular vibrations. In the current study, NIR imaging spectroscopic data were obtained for compositional analysis of tissues that served as an in vitro model of OA. MIR spectroscopic data obtained from the identical tissue regions were used as the gold-standard for collagen and proteoglycan (PG) content. MIR spectroscopy in transmittance mode typically requires a much shorter pathlength through the sample (≤10 microns thick) compared to NIR spectroscopy (millimeters). Thus, this study first addressed the linearity of small absorbance bands in the MIR region with increasing tissue thickness, suitable for obtaining a signal in both the MIR and NIR regions. It was found that the linearity of specific, small MIR absorbance bands attributable to the collagen and PG components of cartilage (at 1336 and 856 cm−1, respectively) are maintained through a thickness of 60 μm, which was also suitable for NIR data collection. MIR and NIR spectral data were then collected from 60 μm thick samples of cartilage degraded with chondroitinase ABC as a model of OA. Partial least squares (PLS) regression using NIR spectra as input predicted the MIR-determined compositional parameters of PG/collagen within 6% of actual values. These results indicate that NIR spectral data can be used to assess molecular changes that occur with cartilage degradation, and further, the data provide a foundation for future clinical studies where NIR fiber optic probes can be used to assess the progression of cartilage degradation.  相似文献   
993.
994.
995.
Dapsone, formerly used to treat leprosy, now has wider therapeutic applications. As is the case for many therapeutic agents, low aqueous solubility and high toxicity are the main problems associated with its use. Derivatization of its amino groups has been widely explored but shows no significant therapeutic improvements. Cocrystals have been prepared to understand not only its structural properties, but also its solubility and dissolution rate. Few salts of dapsone have been described. The title salts, C12H13N2O2S+·C6H5O3S·H2O and C12H13N2O2S+·CH3SO3·H2O, crystallize as hydrates and both compounds exhibit the same space group (monoclinic, P21/n). The asymmetric unit of each salt consists of a 4‐[(4‐aminophenyl)sulfonyl]anilinium monocation, the corresponding sulfonate anion and a water molecule. The cation, anion and water molecule form hydrogen‐bonded networks through N—H…O=S, N—H…Owater and Owater—H…O=S hydrogen bonds. For both salts, the water molecules interact with one sulfonate anion and two anilinium cations. The benzenesulfonate salt forms a two‐dimensional network, while the hydrogen bonding within the methanesulfonate salt results in a three‐dimensional network.  相似文献   
996.
Despite monetary and educational investments in science, technology, engineering, and mathematics (STEM) being at record high levels, little attention has been devoted to generating a common understanding of STEM. In addition, working with business, K–12 schools, and/or institutions of higher education to establish a grassroots effort to help community members understand the importance of STEM regarding the future prosperity of the United States in general, and specifically the preparedness of children for careers of now and the future, has been nonexistent. The purpose of our study is to assess the impact of a statewide STEM professional development program implemented for two years on STEM awareness over time among various community stakeholders (i.e., K–12 teachers, higher education faculty, and business members). STEM awareness and beliefs about STEM engagement, resources, student preparation, and careers all improved over time for all groups. However, business members had the greatest growth over time and held significantly higher awareness compared with the other groups in most areas. Our findings suggest that a statewide STEM partnership/network model is a viable option for growing collective impact and sustainability of STEM K–12 education.  相似文献   
997.
The task of generating a nonredundant set of low-energy conformations for small molecules is of fundamental importance for many molecular modeling and drug-design methodologies. Several approaches to conformer generation have been published. Exhaustive searches suffer from the exponential growth of the search space with increasing degrees of conformational freedom (number of rotatable bonds). Stochastic algorithms do not suffer as much from the exponential increase of search space and provide a good coverage of the energy minima. Here, the use of a multiobjective genetic algorithm in the generation of conformer ensembles is investigated. Distance geometry is used to generate an initial conformer, which is then subject to geometric modifications encoded by the individuals of the genetic algorithm. The geometric modifications apply to torsion angles about rotatable bonds, stereochemistry of double bonds and tetrahedral chiral centers, and ring conformations. The geometric diversity of the evolving conformer ensemble is preserved by a fitness-sharing mechanism based on the root-mean-square distance of the atomic coordinates. Molecular symmetry is taken into account in the distance calculation. The geometric modifications introduce strain into the structures. The strain is relaxed using an MMFF94-like force field in a postprocessing step that also removes conformational duplicates and structures whose strain energy remains above a predefined window from the minimum energy value found in the set. The implementation, called Balloon, is available free of charge on the Internet ( http://www.abo.fi/~mivainio/balloon/).  相似文献   
998.
999.
The mechanism of formation of pinonic and norpinonic acids from alpha-pinene ozonolysis has been investigated by studying the products of the ozonolysis of an enone derived from alpha-pinene using gas chromatography coupled to mass spectrometry.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号