首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1713篇
  免费   98篇
  国内免费   11篇
化学   1329篇
晶体学   10篇
力学   61篇
数学   214篇
物理学   208篇
  2023年   11篇
  2022年   23篇
  2021年   18篇
  2020年   18篇
  2019年   34篇
  2018年   17篇
  2017年   15篇
  2016年   51篇
  2015年   51篇
  2014年   70篇
  2013年   99篇
  2012年   89篇
  2011年   121篇
  2010年   83篇
  2009年   83篇
  2008年   110篇
  2007年   98篇
  2006年   108篇
  2005年   81篇
  2004年   89篇
  2003年   74篇
  2002年   76篇
  2001年   24篇
  2000年   35篇
  1999年   21篇
  1998年   19篇
  1997年   17篇
  1996年   22篇
  1995年   16篇
  1994年   17篇
  1993年   30篇
  1992年   19篇
  1991年   12篇
  1990年   10篇
  1989年   10篇
  1988年   10篇
  1987年   9篇
  1986年   7篇
  1985年   11篇
  1984年   6篇
  1983年   9篇
  1982年   7篇
  1981年   13篇
  1980年   14篇
  1979年   10篇
  1978年   12篇
  1977年   12篇
  1976年   6篇
  1975年   6篇
  1973年   4篇
排序方式: 共有1822条查询结果,搜索用时 15 毫秒
101.
Chemical investigation of the gorgonian coral Junceella fragilis, collected by scuba diving in Taiwan, resulted in the isolation of four new briarane‐type diterpenoids, frajunolides A–D ( 1 – 4 ), along with three known briaranes. Their structures were elucidated on the basis of spectroscopic studies, especially 1‐ and 2D‐NMR as well as HR‐MS experiments. The inhibitory effect of all isolated metabolites towards superoxide‐anion generation and elastase release by human neutrophils in response to formylmethionyl‐leucyl‐phenylalanine/dihydrocytochalasin B (FMLP/CB) was evaluated.  相似文献   
102.
The aim of this review is to summarize the most relevant contributions in the development of electrochemical (bio)sensors based on carbon nanotubes in the last years.Since the first application of carbon nanotubes in the preparation of an electrochemical sensor, an increasing number of publications involving carbon nanotubes-based sensors have been reported, demonstrating that the particular structure of carbon nanotubes and their unique properties make them a very attractive material for the design of electrochemical biosensors.The advantages of carbon nanotubes to promote different electron transfer reactions, in special those related to biomolecules; the different strategies for constructing carbon nanotubes-based electrochemical sensors, their analytical performance and future prospects are discussed in this article.  相似文献   
103.
Disease or injury to articular cartilage results in loss of extracellular matrix components which can lead to the development of osteoarthritis (OA). To better understand the process of disease development, there is a need for evaluation of changes in cartilage composition without the requirement of extensive sample preparation. Near infrared (NIR) spectroscopy is a chemical investigative technique based on molecular vibrations that is increasingly used as an assessment tool for studying cartilage composition. However, the assignment of specific molecular vibrations to absorbance bands in the NIR spectrum of cartilage, which arise from overtones and combinations of primary absorbances in the mid infrared (MIR) spectral region, has been challenging. In contrast, MIR spectroscopic assessment of cartilage is well-established, with many studies validating the assignment of specific bands present in MIR spectra to specific molecular vibrations. In the current study, NIR imaging spectroscopic data were obtained for compositional analysis of tissues that served as an in vitro model of OA. MIR spectroscopic data obtained from the identical tissue regions were used as the gold-standard for collagen and proteoglycan (PG) content. MIR spectroscopy in transmittance mode typically requires a much shorter pathlength through the sample (≤10 microns thick) compared to NIR spectroscopy (millimeters). Thus, this study first addressed the linearity of small absorbance bands in the MIR region with increasing tissue thickness, suitable for obtaining a signal in both the MIR and NIR regions. It was found that the linearity of specific, small MIR absorbance bands attributable to the collagen and PG components of cartilage (at 1336 and 856 cm−1, respectively) are maintained through a thickness of 60 μm, which was also suitable for NIR data collection. MIR and NIR spectral data were then collected from 60 μm thick samples of cartilage degraded with chondroitinase ABC as a model of OA. Partial least squares (PLS) regression using NIR spectra as input predicted the MIR-determined compositional parameters of PG/collagen within 6% of actual values. These results indicate that NIR spectral data can be used to assess molecular changes that occur with cartilage degradation, and further, the data provide a foundation for future clinical studies where NIR fiber optic probes can be used to assess the progression of cartilage degradation.  相似文献   
104.
105.
The size evolution of platinum nanoparticles formed on a SiO2/Si(111) substrate as a function of the level of surface coverage with deposited clusters has been investigated. The anisotropic shapes of sub-nanometer-size nanoparticles are changed to isotropic on the amorphous substrate as their sizes increased. Using anomalous grazing incidence small-angle x-ray scattering (AGISAXS), the scattering from nanoparticles on the surface of a substrate is well separated from that of surface roughness and fluorescence. We show that AGISAXS is a very effective method to subtract the background and can provide unbiased information about particle sizes of less than 1 nm.  相似文献   
106.
[reaction: see text] Electrochemical oxidation of meta-substituted diphenylmethylidenefluorenes (3a-g) results in the formation of fluorenylidene dications that are shown to be antiaromatic through calculation of the nucleus independent chemical shift (NICS) for the 5- and 6-membered rings of the fluorenyl system. There is a strong linear correlation between the redox potential for the dication and both the calculated NICS and sigma(m). Redox potentials for formation of dications of analogously substituted tetraphenylethylenes shows that, with the exception of the p-methyl derivative, the redox potentials for these dications are less positive than for formation of the dications of 3a-g and for dications of p-substituted diphenylmethylidenefluorenes, 2a-g. The greater instability of dications of 2a-g and 3a-g compared to the reference system implies their antiaromaticity, which is supported by the positive NICS values. The redox potentials for formation of the dications of meta-substituted diphenylmethylidenes (3a-g) are more positive than for the formation of dications of para-substituted diphenylmethylidenes (2a-g), indicating their greater thermodynamic instability. The NICS values for dications of 3a-g are more antiaromatic than for dications of 2a-g, which is consistent with their greater instability of the dications of 3a-g. Although the substituted diphenylmethyl systems are not able to interact with the fluorenyl system through resonance because of their geometry, they are able to moderate the antiaromaticity of the fluorenyl cationic system. Two models have been suggested for this interaction, sigma to p donation and the ability of the charge on the substituted ring system to affect delocalization. Examination of bond lengths shows very limited variation, which argues against sigma to p donation in these systems. A strong correlation between NICS and sigma constants suggests that factors that affect the magnitude of the charge on the benzylic (alpha) carbon of the diphenylmethyl cation affect the antiaromaticity of the fluorenyl cation. Calculated atomic charges on carbons 1-8 and 10-13 show an increase in positive charge, and therefore greater delocalization of charge in the fluorenyl system, with increasing electronegativity of the substituent. The change in the amount of positive charge correlated strongly with NICS, supporting the model in which the amount of delocalization of charge is related to the antiaromaticity of the species. Thus, both aromatic and antiaromatic species are characterized by extensive delocalization of electron density.  相似文献   
107.
A fluorescent affinity tag (FAT) was synthesized and was utilized to selectively modify phosphorylated serine and threonine residues via beta-elimination and Michael addition chemistries in a 'one-step' reaction. This labeling technique was used for covalent modification of both phosphoproteins and phosphopeptides, allowing identification of these molecular species by fluorescence imaging after solution- or gel-based separation methods. In addition to the strong fluorescence of the rhodamine tag, a commercially available antibody can be used to enrich low-abundance post-labeled phosphopeptides present in complex mixtures. Application of this methodology to phosphorylation-site mapping has been evaluated for a phosphoprotein standard, bovine beta-casein. Initial results demonstrated low femtomole detection limits after fluorescence image analysis of FAT-labeled proteins or peptides.  相似文献   
108.
In this study, mobility and structure of water molecules in Aerosol OT (bis(2-ethylhexyl) sulfosuccinate, AOT) reverse micelles with water content w0 = 5 and Na+, K+, Cs+ counterions have been explored with molecular dynamics (MD) simulations. Using the Faeder/Ladanyi model (J. Phys. Chem. B, 2000, 104, 1033) of the reverse micelle interior, MD simulations were performed to calculate the self-intermediate scattering function, FS(Q,t), for water hydrogen atoms that could be measured in a quasielastic neutron scattering experiment. Separate intermediate scattering functions FRS(Q,t) and FCMS(Q,t) were determined for rotational and translational motion. We find that the decay of FCMS(Q,t) is nonexponential and our analysis of the MD data indicates that this behavior arises from decreased water mobility for molecules close to the interface and from confinement-induced restrictions on the range of translational displacements. Rotational relaxation also exhibits nonexponential decay, which is consistent with relatively rapid restricted rotation and slower rotational relaxation over the full angular range. Rotational relaxation is anisotropic, with the O-H bond short-time rotational mobility considerably higher than that of the molecular dipole. This behavior is related to the decreased density of water-water hydrogen bonds in the vicinity of the interface compared to core or bulk water. We find that the interfacial mobility of water molecules is quite different for the three counterion types, but that the core mobility exhibits weak counterion dependence. Differences in interfacial mobility are strongly correlated with structural features, especially ion-water coordination, and the extent of disruption by the counterions of the water hydrogen bond network.  相似文献   
109.
Bioassay‐guided fractionation of an AcOEt extract of Casearia membranacea resulted in the isolation of six new clerodane diterpenes, caseamembrins G–L ( 1 – 6 ). The structures of the new compounds, including their relative configurations, were established by an extensive study of their spectral data, especially 2D NMR. The cytotoxic activities of the isolated diterpenes against human oral epidermoid (KB), cervical epitheloid (Hela), and liver (Hep59T/VGH) carcinoma cell lines were investigated.  相似文献   
110.
Three new clerodane diterpene derivatives were isolated from the leaves of Casearia membranacea Hance collected in Taiwan. The isolated metabolites were identified as caseamembrins P (1), Q (2), and R (3). Identification of the structures was based on detailed analysis of the spectral data, especially 2D NMR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号