首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   10篇
  国内免费   1篇
化学   183篇
晶体学   2篇
力学   16篇
数学   33篇
物理学   34篇
  2022年   5篇
  2021年   3篇
  2020年   10篇
  2019年   13篇
  2018年   20篇
  2017年   12篇
  2016年   20篇
  2015年   14篇
  2014年   18篇
  2013年   24篇
  2012年   19篇
  2011年   25篇
  2010年   18篇
  2009年   12篇
  2008年   12篇
  2007年   15篇
  2006年   5篇
  2005年   6篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  1998年   1篇
  1995年   1篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
排序方式: 共有268条查询结果,搜索用时 31 毫秒
101.
This paper is devoted to the time‐fractional gas dynamics equation with Caputo derivative. Fractional operators are very natural tools to model memory‐dependent phenomena. Modified iteration method is proposed to obtain the approximate and analytical solution of the fractional gas dynamics equation. This method is a combined form of the new iteration method and Laplace transform. Modified iteration method really is powerful and simple method compared with other methods. Existence and uniqueness of solution are proven. Numerical results for different cases of the equation are obtained. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
102.
Despite importance of integrating organic molecules with graphene to fabricate graphene‐based electronic devices, the role of substituents and interface stabilizing forces are poorly understood. In this work, the interactions of 7,7,8,8‐tetracyanoquinodimethane (TCNQ), 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ), hydroquinone (Q), and tetrafluorohydroquinone (TFQ) with graphene have been investigated by means of interacting quantum atoms and SAPT(DFT). In addition, in context of potential design of a graphene‐based sensor for detection of the nerve agent sarin, we studied the interaction of graphene and the organic molecules with the dimethyl methylphosphonate (DMMP)—the molecule that mimics sarin. The results show that the organic molecules attach to graphene via C(sp2)?C(sp2), C(sp2)?C(sp) and H?π bonds. In addition, they trap DMMP via various linkages such as hydrogen, lonepair?π and H?π . The quantum effects play a significant role. The Pauli repulsion is responsible for p‐doping of graphene. The substituents are stabilized on graphene by the exchange‐correlation energy. The fluorination of the benzenoid ring raises the electron‐sharing . The through space and through bond effects of the fluorine atoms (‐F) increase the classical attraction of the cyano groups and benzenoid ring with graphene, respectively. When comparing performance of the ab initio and DFT methods, MP2 predicts too much attraction due to well‐known overestimation of the dispersion energy by the uncoupled dispersion component for benzene rings, while ω B97xD functional and SAPT(DFT) provide weaker interaction energies, in good agreement with each other.  相似文献   
103.
104.
We report on the design of a UO22+‐selective electrode based on the use of UO22+ imprinted polymer nanoparticles (IP‐NPs), and its application for the differential pulse adsorptive cathodic stripping voltammetry determination of uranyl ions. A carbon paste electrode was modified with the IP‐NPs, and differential pulse adsorptive cathodic stripping voltammetry was applied as the detection technique after open‐circuit sorption of UO22+ ions. The modified electrode responses to UO22+ was linear in the 0.1 µg L?1 to 10 µg L?1 and in the 0.01 mg L?1 to 10 mg L?1. The method detection limit of the sensor was 0.03 µg L?1.  相似文献   
105.
We report a multispectroscopic, voltammetric and theoretical hybrid of QM/MM study of the interaction between double-stranded DNA containing both adenine-thymine and guanine-cytosine alternating sequences and chloridazon (CHL) herbicide. The electrochemical behavior of CHL was studied by cyclic voltammetry on HMDE, and the interaction of ds-DNA with CHL was investigated by both cathodic differential pulse voltammetry (CDPV) at a hanging mercury drop electrode (HMDE) and anodic differential pulse voltammetry (ADPV) at a glassy carbon electrode (GCE). The constant bonding of CHL-DNA complex that was obtained by UV/vis, CDPV and ADPV was 2.1×10(4), 5.1×10(4) and 2.6×10(4), respectively. The competition fluorescence studies revealed that the CHL quenches the fluorescence of DNA-ethidium bromide complex significantly and the apparent Stern-Volmer quenching constant has been estimated to be 1.71×10(4). Thermal denaturation study of DNA with CHL revealed the ΔTm of 8.0±0.2°C. Thermodynamic parameters, i.e., enthalpy (ΔH), entropy (ΔS°), and Gibbs free energy (ΔG) were 98.45 kJ mol(-1), 406.3 J mol(-1) and -22.627 kJ mol(-1), respectively. The ONIOM, based on the hybridization of QM/MM (DFT, 6.31++G(d,p)/UFF) methodology, was also performed using Gaussian 2003 package. The results revealed that the interaction is base sequence dependent, and the CHL has more interaction with ds-DNA via the GC base sequence. The results revealed that CHL may have an interaction with ds-DNA via the intercalation mode.  相似文献   
106.
Different nanoporous silica materials, MCM-41, MCM-48 and SBA-15, were modified by pyridine and their applications for oral drug delivery system were evaluated. These pyridine functionalized nanoporous silicas were loaded with a water insoluble diorganotin(IV) dichloride complex as an antitumor drug model and its release from them were investigated by changing pH. An efficient pH-responsive carrier system was constructed by coordination of the pyridine group in modified nonoporous materials to tin complex. In vitro, releasing of loaded tin complex was studied in three different kinds of fluids, including a simulated gastric medium and a simulated body fluid. The loading and releasing of the diorganotin(IV) dichloride from various modified nanoporous silicas and also a non-porous silica (SiO2) were investigated, and the results were compared. In addition, the effect of some factors such as pH, time of loading and releasing were investigated through this study.  相似文献   
107.
A novel capacitive sensor based on electropolymerized molecularly imprinted polymer (MIP) for thiopental detection is described. The molecularly imprinted film as a recognition element was prepared by electropolymerization of phenol on a gold electrode in the presence of thiopental (template). Cyclic voltammetry and capacitive measurements were used for characterization and evaluation of the polymeric film. The template molecules were removed from the modified electrode surface by washing with an ethanol:water solution. The sensor’s linear response range was between 3 and 20 µM, with a detection limit of 0.6 µM. The proposed sensor exhibited good selectivity, reproducibility. Satisfactory results were obtained in the direct detection of real samples.  相似文献   
108.
The main goal of this work is the generation of a new force field data set to the interaction of several gases such as H2, O2, N2, CO, H2O, and H2S with alkali cation-doped carbon nanotubes (CNTs) using ab initio calculations at the MP2(full)/6-311++G(d,p) level of theory. Different alkali cations including Li+, Na+, K+ and Cs+ were used to dope in the CNT. The calculated potential energy curve for the interaction of each gas molecule with each alkali cation-doped CNTs was fitted to an analytical potential function to obtain the parameters of the potential function. A modified Morse potential function was selected for the fitting in which the electrostatic interactions has been accounted by adding the β/r term to the Morse potential. The accuracy of the calculated force field was checked via Grand Canonical Monte Carlo (GCMC) simulation of the H2 adsorption on Li-doped graphite and Li-doped CNT. The results of these simulations were compared with the experimental measurements and the closeness of the simulation results with the experimental data indicated the accuracy of the proposed force field. The main merit of this work is the derivation of a specific force field for interaction of each of six gases with four alkali cation-doped CNT, which can be used in molecular simulation of these 24 of systems. The simulation results showed the increase of the H2 adsorption capacity of nanotube and graphite up to 50% and 10%, respectively, due to the insertion of Li ions.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号