High-resolution small-angle X-ray scattering (SAXS), complemented by small-angle neutron scattering (SANS) and dynamic light scattering (DLS) experiments, was used to study the effect of curvature on the bilayer structure of dioleoyl-phosphatidylcholine (DOPC) and dioleoyl-phosphatidylserine (DOPS) unilamellar vesicles (ULVs). Bilayer curvature, as a result of finite vesicle size, was varied as a function of vesicle radius and determined by DLS and SANS measurements. Unilamellarity of large DOPC ULVs was achieved by the addition of small amounts (up to 4 mol %) of the charged lipid, DOPS. A comparison of SANS data over the range of 0.02 < q <0.2 A-1 indicated no change in the overall bilayer thickness as a function of ULV diameter (620 to 1840 A). SANS data were corroborated by high-resolution (0.06 < q <0.6 A-1) SAXS data for the same diameter ULVs and data obtained from planar samples of aligned bilayers. Both the inner and outer leaflets of the bilayer were found to be indistinguishable. This observation agrees well with simple geometric models describing the effect of vesicle curvature. However, 1220-A-diameter pure DOPS ULVs form asymmetric bilayers whose structure can most likely be rationalized in terms of geometrical constraints coupled with electrostatic interactions, rather than curvature alone. 相似文献
A commercially available palladium N‐heterocyclic carbene (Pd‐NHC) precatalyst is used to initiate chain‐growth polymerization of 2‐bromo‐3‐hexyl‐5‐trimethylstannylthiophene. The molecular weight of the resultant poly(3‐hexylthiophene) can be modulated (7 to 73 kDa, Đ = 1.14 to 1.53) by varying the catalyst concentration. Mass spectrometry data confirm control over the polymer end groups and 1H NMR spectroscopy reveals that the palladium catalyst is capable of “ring‐walking”. A linear relationship between Mn and monomer conversion is observed. Atomic force microscopy and X‐ray scattering verify the regioregular nature of the resultant polythiophene.
Early evaluations of the bioconversion potential for combined wastes such as tuna sludge and sorted municipal solid waste (MSW) were conducted at laboratory scale and compared conventional low-solids, stirred-tank anaerobic systems with the novel, high-solids anaerobic digester (HSAD) design. Enhanced feedstock conversion rates and yields were determined for the HSAD system. In addition, the HSAD system demonstrated superior resiliency to process failure. Utilizing relatively dry feedstocks, the HSAD system is approximately one-tenth the size of conventional low-solids systems. In addition, the HSAD system is capable of organic loading rates (OLRs) on the order of 20-25 g volatile solids per liter digester volume per d (gVS/L/d), roughly 4-5 times those of conventional systems
Current efforts involve developing a demonstration-scale (pilot-scale) HSAD system. A two-ton/d plant has been constructed in Stanton, CA and is currently in the commissioning/startup phase. The purposes of the project are to verify laboratory- and intermediate-scale process performance; test the performance of large-scale prototype mechanical systems; demonstrate the long-term reliability of the process; and generate the process and economic data required for the design, financing, and construction of full-scale commercial systems. This study presents conformational fermentation data obtained at intermediate-scale and a snapshot of the pilot-scale project
Summary Ion-sensitive, planar micro-electrode arrays were fabricated by photolithographic microelectronics technology on a flexible polyimide substrate. The steps of the microelectronics processing are summarized. The electrodes were tested in blood serum, whole blood and in the hamstring muscle of anesthetized rabbits. The performance characteristics of planar pH-sensors are compared with commercial glass electrodes. The close correlation of the data are encouraging for further acute and later chronic applications.Dedicated to Professor Dr. Wilhelm Fresenius 相似文献
The first result of this paper is to show that the Onsager—Slater theory of the dielectric constant is consistent for some reasoable model of ice in the limit of no intrinsic defects. Accordingly, a model is presented, called the unit model, which has unit cells with no dipole moments for which the Onsager—Slater theory is exact. The second result of this paper is to show that the unit model is physically and chemically realistic. Bjerrum defects are introduced into the model and the relation between the dielectric constant and the Bjerrum defect charge found by Onsager and Dupuis for a less realistic model continues to hold and is satisfied by the experimental values. In a simple point charge approximation the charge distribution determined by the model requirements and the experimentally determined Bjerrum fault charge are found and seem reasonble. Higher order multipole interaction energies are consistent with eviations from pure 1/T dependence of the dielectric constant of real ice with intrinsic defects, can be derived in the context of the unit model. This formula interpolates between the Onsager—Slater formula in the limit of no intrinsic defects and the Kirkwood—Frohlich formula in the limit of many intrinsic defects. For the concentration of defects in real ice the interpolation formula is practically the same as the Onsager—Slater formula and differs from the Kirkwood—Frohlich formula by a factor of nearly . 相似文献
The enigmatic but much accepted vapor pressure paradox for oriented lipid bilayer samples was recently justified theoretically. Subsequently, recent experiments have shown that there is no vapor pressure paradox. The first result of this paper is to consider another degree of freedom that reverses the previous theoretical conclusion, so that theory and experiment are now in agreement that there is no vapor pressure paradox. However, this analysis also suggests the possibility of a vestigial vapor pressure paradox that would rationalize why the vapor pressure paradox was historically so persistent and that would have led to an improved protocol for obtaining bilayer structure. This vestigial vapor pressure paradox would involve a phase transition as a function of applied osmotic pressure. We test this possibility experimentally using combined neutron and x-ray scattering data. The conclusion from these experiments is that there is not even a vestigial vapor pressure paradox. However, this negative result validates an improved method for calibrating osmotic pressure in x-ray studies of oriented samples. 相似文献