首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   2篇
化学   25篇
物理学   15篇
  2017年   2篇
  2015年   2篇
  2013年   1篇
  2012年   5篇
  2011年   3篇
  2010年   3篇
  2009年   4篇
  2008年   7篇
  2007年   5篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  1984年   2篇
排序方式: 共有40条查询结果,搜索用时 265 毫秒
21.
22.
In the present work a novel methodology is developed for the unambiguous discrimination of enantiomers aligned in chiral liquid crystalline media and the simultaneous determination of 1H-1H and 13C-1H couplings in a single experiment. An INEPT transfer and back transfer of magnetization to protons retain the 13C edited 1H magnetization which is utilized to generate spin selective homonuclear triple quantum coherence of dipolar coupled methyl protons. Spin selective correlation of triple quantum to single quantum coherence results in spin state selective detection by 13C spin and the remaining passive protons. The difference between the successive transitions in the triple quantum dimension pertains to sum of the passive couplings and results in enhanced resolution by a factor of three. This results in unambiguous chiral visualization. The masked 13C satellite transitions in the single quantum spectrum are extracted for chiral discrimination. The technique retains all the passive homo- and heteronuclear couplings in the triple quantum dimension by the application of non-selective refocusing pulse on 1H as well as on 13C spins. This, however, refocuses the chemical shift evolution in the triple quantum dimension, and also overcomes the problem of field inhomogeneity. The method enables the determination of spectral information which is otherwise not possible to derive from the broad and featureless proton spectra. The elegant experimental technique has been demonstrated on different chiral molecules.  相似文献   
23.
Homonuclear higher quantum NMR spectra of heteronuclear spin systems result in fewer transitions aiding the analyses. In such experiments the spin states of the heteronuclei do not get disturbed in both single and multiple quantum dimensions resulting in the separation of active homonuclear and passive heteronuclear couplings in two dimensions. The cross sections of the single-quantum dimension get displaced according to the strengths of the passive couplings. The directions of the displacement of these cross sections provide relative signs among the passive couplings. The present study demonstrates the situations when the displacement vectors, though provide the relative signs, could be ambiguous. The dynamics of the spin systems in homo- and heteronuclear multiple quantum studies have been discussed using polarization operator approach. The experimental results on 13C- and 15N-labeled isotopomers of acetonitrile, in both isotropic and thermotropic liquid crystalline phases, are reported.  相似文献   
24.
We report a novel 1D J‐edited pure shift NMR experiment (J‐PSHIFT) that was constructed from a pseudo 2D experiment for the direct measurement of proton–proton scalar couplings. The experiment gives homonuclear broad‐band 1H‐decoupled 1H NMR spectra, which provide a single peak for chemically distinct protons, and only retain the homonuclear‐scalar‐coupled doublet pattern at the chemical‐shift positions of the protons in the coupled network of a specific proton. This permits the direct and unambiguous measurement of the magnitudes of the couplings. The incorporation of a 1D selective correlation spectroscopy (COSY)/ total correlation spectroscopy (TOCSY) block in lieu of the initial selective pulse, results in the exclusive detection of the correlated spectrum of a specific proton.  相似文献   
25.
In the present work we demonstrate a novel method for spectral simplification and determination of the relative signs of the scalar couplings using a spin selective multiple quantum NMR experiment. A spin selective excitation of double quantum coherence of A and M spins in a weakly coupled three spin system of the type AMX, results in a doublet in the double quantum dimension whose separation corresponds to the sum of couplings of the active spins to the passive spin X. One component of the doublet has the passive spin X in mid R:alpha state while the other component has the passive spin X in mid R:beta state. The spin selective conversion of double quantum coherence to single quantum coherence does not disturb the spin states of the passive spin thereby providing the spin state selection. There will be two domains of single quantum transitions in single quantum dimension at the chemical shift positions of A and M spins. The mid R:alpha domain of A spin is a doublet because of mid R:alpha and mid R:beta states of M spin only, while that of mid R:beta domain is another doublet in a different cross section of the spectra. The scalar coupling J(AM) can be extracted from any of the mid R:alpha and mid R:beta domain transitions while the relative displacements of the two doublets between the two domains at the two chemical shifts provides the magnitude and sign of the scalar coupling J(AX) relative to the coupling J(MX). Similar result is obtained for zero quantum studies on AMX spin system. The proposed technique is discussed theoretically using product operator approach. The new spin state selective double quantum J-resolved sequence has also been developed. The methodology is confirmed experimentally on a homonuclear weakly coupled three spin system and applied to two different heteronuclear five spin systems.  相似文献   
26.
NMR spectra of molecules oriented in liquid-crystalline matrix provide information on the structure and orientation of the molecules. Thermotropic liquid crystals used as an orienting media result in the spectra of spins that are generally strongly coupled. The number of allowed transitions increases rapidly with the increase in the number of interacting spins. Furthermore, the number of single quantum transitions required for analysis is highly redundant. In the present study, we have demonstrated that it is possible to separate the subspectra of a homonuclear dipolar coupled spin system on the basis of the spin states of the coupled heteronuclei by multiple quantum (MQ)-single quantum (SQ) correlation experiments. This significantly reduces the number of redundant transitions, thereby simplifying the analysis of the complex spectrum. The methodology has been demonstrated on the doubly 13C labeled acetonitrile aligned in the liquid-crystal matrix and has been applied to analyze the complex spectrum of an oriented six spin system.  相似文献   
27.
One-dimensional (1D) proton NMR spectra of enantiomers are generally undecipherable in chiral orienting poly-γ-benzyl-l-glutamate (PBLG)/CDCl3 solvent. This arises due to large number of couplings, in addition to superposition of spectra from both the enantiomers, severely hindering the 1H detection. On the other hand in the present study the benefit is derived from the presence of several couplings among the entire network of interacting protons. Transition selective 1D 1H–1H correlation experiment (1D-COSY) which utilizes the coupling assisted transfer of magnetization not only for unraveling the overlap but also for the selective detection of enantiopure spectrum is reported. The experiment is simple, easy to implement and provides accurate eanantiomeric excess in addition to the determination of the proton–proton couplings of an enantiomer within a short experimental time (few minutes).  相似文献   
28.
NMR spectra of molecules oriented in liquid crystals provide homo- and heteronuclear dipolar couplings and thereby the geometry of the molecules. Several inequivalent dilute spins such as 13C and 15N coupled to protons form different coupled spin systems in their natural abundance and appear as satellites in the proton spectra. Identification of transitions belonging to each spin system is essential to determine heteronuclear dipolar couplings, which is a formidable task. In the present study, using 15N-1H and 13C-1H HSQC, and HMQC experiments we have selectively detected spectra of each rare spin coupled to protons. The 15N-1H and 13C-1H dipolar couplings have been determined in the natural abundance of 13C and 15N for the molecules pyrazine, pyrimidine and pyridazine oriented in a thermotropic liquid crystal.  相似文献   
29.
The utility of enantiopure BINOL (1,10-Bi-2-naphthol), in a ternary ion-pair complex, which is obtained using a carboxylic acid and an organic base, as a versatile chiral solvating agent (CSA) has been demonstrated for chiral analysis and the absolute configuration assignment of hydroxy acids. Another protocol where the utility of NOBIN as a CSA has been developed for discrimination and absolute configuration assignment of acids, hydroxy acids and their derivatives with a distinct strategy where a third ingredient, p-toluenesulfonic acid (p-TsOH) serves as a linker. In addition some three component chiral derivatization protocols have been introduced, such as the use of 2-formylphenylboronic acid and enantiopure mandelic acid or a primary amine for the determination of the configuration of primary amines and hydroxy acids, respectively. A simple, rapid and highly efficient three component chiral derivatizing protocol has also been discussed which was developed for assigning the absolute configuration of chiral α-hydroxy acids and their derivatives, which involves the coupling of 2-formylphenylboronic acid with (R)-[1,1-binaphthalene]-2,2-diamine, and (S)-[1,1-binaphthalene]-2,2-diamine separately. In a few examples, the DFT based theoretical calculations have been carried out to determine the geometry optimized structures of the complexes.  相似文献   
30.
The scalar coupled proton NMR spectra of many organic molecules possessing more than one phenyl ring are generally complex due to degeneracy of transitions arising from the closely resonating protons, in addition to several short‐ and long‐range couplings experienced by each proton. Analogous situations are generally encountered in derivatives of halogenated benzanilides. Extraction of information from such spectra is challenging and demands the differentiation of spectrum pertaining to each phenyl ring and the simplification of their spectral complexity. The present study employs the blend of independent spin system filtering and the spin‐state selective detection of single quantum (SQ) transitions by the two‐dimensional multiple quantum (MQ) methodology in achieving this goal. The precise values of the scalar couplings of very small magnitudes have been derived by double quantum resolved experiments. The experiments also provide the relative signs of heteronuclear couplings. Studies on four isomers of dihalogenated benzanilides are reported in this work. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号