首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   322篇
  免费   9篇
化学   255篇
晶体学   4篇
力学   19篇
数学   13篇
物理学   40篇
  2023年   1篇
  2022年   2篇
  2020年   4篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   5篇
  2014年   6篇
  2013年   9篇
  2012年   21篇
  2011年   33篇
  2010年   11篇
  2009年   16篇
  2008年   18篇
  2007年   29篇
  2006年   10篇
  2005年   25篇
  2004年   12篇
  2003年   15篇
  2002年   19篇
  2001年   6篇
  2000年   11篇
  1999年   8篇
  1998年   6篇
  1997年   4篇
  1996年   2篇
  1994年   1篇
  1993年   4篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1981年   3篇
  1980年   6篇
  1979年   2篇
  1978年   1篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1963年   1篇
  1961年   1篇
排序方式: 共有331条查询结果,搜索用时 15 毫秒
91.
The development and cellular applications of novel fluorescent probes for Zn2+, ZnAF-1F, and ZnAF-2F are described. Fluorescein is used as a fluorophore of ZnAFs, because its excitation and emission wavelengths are in the visible range, which minimizes cell damage and autofluorescence by excitation light. N,N-Bis(2-pyridylmethyl)ethylenediamine, used as an acceptor for Zn2+, is attached directly to the benzoic acid moiety of fluorescein, resulting in very low quantum yields of 0.004 for ZnAF-1F and 0.006 for ZnAF-2F under physiological conditions (pH 7.4) due to the photoinduced electron-transfer mechanism. Upon the addition of Zn2+, the fluorescence intensity is quickly increased up to 69-fold for ZnAF-1F and 60-fold for ZnAF-2F. Apparent dissociation constants (K(d)) are in the nanomolar range, which affords sufficient sensitivity for biological applications. ZnAFs do not fluoresce in the presence of other biologically important cations such as Ca2+ and Mg2+, and are insensitive to change of pH. The complexes with Zn2+ of previously developed ZnAFs, ZnAF-1, and ZnAF-2 decrease in fluorescence intensity below pH 7.0 owing to protonation of the phenolic hydroxyl group of fluorescein, whose pKa value is 6.2. On the other hand, the Zn2+ complexes of ZnAF-1F and ZnAF-2F emit stable fluorescence around neutral and slightly acidic conditions because the pKa values are shifted to 4.9 by substitution of electron-withdrawing fluorine at the ortho position of the phenolic hydroxyl group. For application to living cells, the diacetyl derivative of ZnAF-2F, ZnAF-2F DA, was synthesized. ZnAF-2F DA can permeate through the cell membrane, and is hydrolyzed by esterase in the cytosol to yield ZnAF-2F, which is retained in the cells. Using ZnAF-2F DA, we could measure the changes of intracellular Zn2+ in cultured cells and hippocampal slices.  相似文献   
92.
93.
Boron dipyrromethene (BODIPY) is known to have a high quantum yield (phi) of fluorescence in aqueous solution but has not been utilized much for biological applications, compared to fluorescein. We developed 8-(3,4-diaminophenyl)-2,6-bis(2-carboxyethyl)-4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (DAMBO-P(H)), based on the BODIPY chromophore, as a highly sensitive fluorescence probe for nitric oxide (NO). DAMBO-P(H) had a low phi value of 0.002, whereas its triazole derivative (DAMBO-P(H)-T), the product of the reaction of DAMBO-P(H) with NO, fluoresced strongly (phi = 0.74). The change of the fluorescence intensity was found to be controlled by an intramolecular photoinduced electron transfer (PeT) mechanism. The strategy for development of DAMBO-P(H) was as follows: (1) in order to design a highly sensitive probe of NO, the reactivity of o-phenylenediamine derivatives as NO-reactive moieties was examined using 4,5-diaminofluorescein (DAF-2, a widely used NO fluorescence probe), (2) in order to avoid pH-dependency of the fluorescence intensity, the PeT process was controlled by modulating the spectroscopic and electrochemical properties of BODIPY chromophores according to the Rehm-Weller equation based on measurement of excitation energies of chromophores, ground-state reduction potentials of PeT acceptors (BODIPYs), and calculation of the HOMO energy level of the PeT donor (o-phenylenediamine moiety) at the B3LYP/6-31G level, (3) in order to avoid quenching of fluorescence by stacking of the probes and to obtain probes suitable for biological applications, hydrophilic functional groups were introduced. This strategy should be applicable for the rational design of other novel and potentially useful bioimaging fluorescence probes.  相似文献   
94.
The LaCuO3−yperovskite is considered as the first member of the 01(n−1)nseries of “layered cuprates.” Highly oxidized, stoichiometric LaCuO3is stabilized under very high oxygen pressures, and was synthesized in a cubic-anvil-type high-pressure apparatus at 5 GPa and 1400°C using excess amounts of KClO4as an external oxidizing agent. Upon heating under ambient pressure the rhombohedral high-pressure phase loses oxygen yielding tetragonal, monoclinic, and orthorhombic forms of LaCuO3−yas intermediate products before the final decomposition into La2CuO4and CuO or Cu2O around 800°C. All three oxygen-deficient LaCuO3−yphases could be isolated and their stability limits and corresponding oxygen contents conveniently investigated by annealing stoichiometric LaCuO3in a thermobalance of high sensitivity in order toin situdetect the exact amount of oxygen loss. The nominal copper valence values calculated from the oxygen contents are compared and discussed with XPS data as well as with the results evaluated from magnetic susceptibility measurements.  相似文献   
95.
Ratiometric measurement is a technique that can provide precise data and even quantitative detection. To carry out ratiometric measurements, it is necessary that the sensor molecule exhibits a large shift in its emission or excitation spectrum after reaction with the target molecule. Fluorescence resonance energy transfer (FRET) is one mechanism used to obtain a large spectral shift. In this study, our aim was to develop a ratiometric fluorescent sensor molecule for phosphodiesterase activity based on FRET. We designed and synthesized CPF4 with a coumarin donor, a fluorescein acceptor, and two phenyl linkers having the phosphodiester moiety interposed between them. In the emission spectrum of CPF4 in aqueous buffer excited at 370 nm, the emission of the coumarin donor was strongly quenched and the emission of the fluorescein acceptor was observed. This emission spectrum demonstrates that energy transfer from the coumarin donor to the fluorescein acceptor proceeds efficiently. Addition of a phosphodiesterase to an aqueous solution of CPF4 resulted in an increase in the donor fluorescence and a decrease in the acceptor fluorescence. CPF4 exhibited a large shift in its emission spectrum after the hydrolysis of the phosphodiester group by the enzyme. This large shift of the emission spectrum indicates that ratiometric measurements can be made by using CPF4. The method described in this paper for designing enzyme-cleavable sensor molecules based on FRET should be readily applicable to other hydrolytic enzymes.  相似文献   
96.
Fluorescence imaging is the most powerful technique currently available for continuous observation of dynamic intracellular processes in living cells. Suitable fluorescence probes are naturally of critical importance for fluorescence imaging, but only a very limited range of biomolecules can currently be visualized because of the lack of flexible design strategies for fluorescence probes. At present, design is largely empirical. Here we show that the carboxylic group of traditional fluorescein dyes, formerly considered indispensable, has been replaced with other substituents, affording various kinds of new fluoresceins. Further, by breaking out of the traditional structure of fluorescein, we developed the first and totally rational design strategy for novel fluorescence probes based on a strict photochemical basis. The value of this approach is exemplified by its application to develop a novel, highly sensitive, and membrane-permeable fluorescence probe for beta-galactosidase, which is the most widely used reporter enzyme.  相似文献   
97.
Hot electron (E-EFermi=0.75 to 1.55 eV) lifetimes for cesiated Cu(100) and Cu(111) surfaces are measured via interferometric time-resolved two-photon photoemission with a 19-fs intensity FWHM mode locked Ti:sapphire laser at 1.55 eV. The data are analyzed using the optical Bloch equations and a laser pulse characterized in situ via surface second-harmonic generation interferometric autocorrelation. It is found that the retrieved hot-electron lifetimes are unphysically fast, and have a strong dependence on the temperature of the sample and the polarization of the laser. A simple explanation for the data is that the measured signal consists of contributions from transitions through both virtual and real intermediate states. Received: 26 July 2000 / Accepted: 8 September 2000 / Published online: 12 October 2000  相似文献   
98.
A micro-combustion calorimeter was developed. The small energy equivalent (ca. 68 JK–1) of this calorimeter makes it possible to measure combustion energies of very small samples. The energy equivalent was determined by burning 2 mg of benzoic acid. The standard deviation of the mean energy equivalent was reduced to 0.014% in 5 experiments. The standard massic energy of combustion of salicylic acid and the standard deviation of the mean were determined to be –21871±5 J g–1, which agrees well with the literature values. The standard molar enthalpy of formation of salicylic acid was derived as –591.2±1.7 kJ mol–1.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   
99.
This paper deals with the traditional permutation flow shop scheduling problem with the objective of minimizing mean flowtime, therefore reducing in-process inventory. A new heuristic method is proposed for the scheduling problem solution. The proposed heuristic is compared with the best one considered in the literature. Experimental results show that the new heuristic provides better solutions regarding both the solution quality and computational effort.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号