首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   15篇
  国内免费   8篇
化学   160篇
晶体学   3篇
力学   11篇
综合类   1篇
数学   25篇
物理学   61篇
  2023年   6篇
  2022年   23篇
  2021年   15篇
  2020年   16篇
  2019年   16篇
  2018年   11篇
  2017年   12篇
  2016年   10篇
  2015年   12篇
  2014年   12篇
  2013年   15篇
  2012年   15篇
  2011年   18篇
  2010年   11篇
  2009年   15篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   5篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有261条查询结果,搜索用时 15 毫秒
251.
The new 2-phenylthiocarbamoyl-1,3-dimesitylimidazolium inner salt (IMes·CSNPh) reacts with [AuCl(L)] in the presence of NH(4)PF(6) to yield [(L)Au(SCNPh·IMes)](+) (L = PMe(3), PPh(3), PCy(3), CNBu(t)). The carbene-containing precursor [(IDip)AuCl] reacts with IMes·CSNPh under the same conditions to afford the complex [(IDip)Au(SCNPh·IMes)](+) (IDip = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene). Treatment of the diphosphine complex [(dppm)(AuCl)(2)] with one equivalent of IMes·CSNPh yields the digold metallacycle, [(dppm)Au(2)(SCNPh·IMes)](2+), while reaction of [L(2)(AuCl)(2)] with two equivalents of IMes·CSNPh results in [(L(2)){Au(SCNPh·IMes)}(2)](2+) (L(2) = dppb, dppf, or dppa; dppb = 1,4-bis(diphenylphosphino)butane, dppf = 1,1'-bis(diphenylphosphino)ferrocene, dppa = 1,4-bis(diphenylphosphino)acetylene). The homoleptic complex [Au(SCNPh·IMes)(2)](+) is formed on reaction of [AuCl(tht)] (tht = tetrahydrothiophene) with two equivalents of the imidazolium-2-phenylthiocarbamoyl ligand. This product reacts with AgOTf to yield the mixed metal compound [AuAg(SCNPh·IMes)(2)](2+). Over time, the unusual trimetallic complex [Au(AgOTf)(2)(SCNPh·IMes)(2)](+) is formed. The sulfur-oxygen mixed-donor ligands IMes·COS and SIMes·COS (SIMes = 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene) were used to prepare [(L)Au(SOC·IMes)](+) and [(L)Au(SOC·SIMes)](+) from [(L)AuCl] (L = PPh(3), CN(t)Bu). The bimetallic examples [(dppf){Au(SOC·IMes)}(2)](2+) and [(dppf){Au(SOC·SIMes)}(2)](2+) were synthesized from the reaction of [(dppf)(AuCl)(2)] with the appropriate ligand. Reaction of [(tht)AuCl] with one equivalent of IMes·COS or SIMes·COS yields [Au(SOC·IMes)(2)](+) and [Au(SOC·SIMes)(2)](+), respectively. The compounds [(Ph(3)P)Au(SCNPh·IMes)]PF(6), [(Cy(3)P)Au(SCNPh·IMes)]PF(6) and [Au(AgOTf)(2)(SCNPh·IMes)(2)]OTf were characterized crystallographically.  相似文献   
252.
An atom-economical purification protocol, using solution phase processing via ring-opening metathesis polymerization (ROMP) has been developed for the synthesis of tricyclic sultams. This chromatography-free method allows for convenient isolation of reductive-Heck products and reclamation of excess starting material via sequestration involving metathesis catalysts and a catalyst-armed Si-surface.  相似文献   
253.
A synthetic polymer was synthesized and used for the improvement of dyeing properties as well as decolorization of textile waste water. Two dyes were selected having anthraquinone based Remazol Blue R and azo based Remazol Red RB. It was observed that the synthetic polymer can be used as fixer for the fixation of dye by crosslinking between dye and fibre, which not only improves the dyeing properties but also helpful to coagulate the colour after dyeing. By single point method the concentrations of synthetic polymer were calculated in residual after dyeing. It was examined that the residual synthetic polymer is helpful in colour removal efficiency by coagulation of polymer with dye to form heavy molecules which settle down and decolorization occurred. Colour removal efficiency was found dependents on pH, concentration of synthetic polymer and inorganic coagulant.  相似文献   
254.
A new spectrofluorimetric method has been developed and validated for the quantification of ceftriaxone in bulk powder, pharmaceutical formulations and spiked human plasma. The developed method is reproducible, accurate, sensitive and cost effective. In this method, ceftriaxone was converted into a fluorescent compound by reacting with 0.8 M ethyl acetoacetate and 25% formaldehyde in a buffered medium (pH = 4.2) at 90 °C. The excitation and emission wavelengths of the fluorescent reaction product are 316 nm and 388 nm respectively. Optimization of the experimental conditions affecting the condensation reaction were carefully carried out and the optimum experimental conditions were incorporated in the procedure. The developed method has a broad linear range (0.2–20 μg mL−1) with a correlation coefficient of 0.9992. The limit of detection (LOD) and limit of quantification (LOQ) was found to be 1.94 × 10−2 μg mL−1 and 6.47 × 10−2 μg mL−1 respectively. The common excipients and co-administered drugs were investigated for their interferences effect in the assay. The developed method was validated statistically through recovery studies and successfully applied to ceftriaxone determination in bulk powder, pharmaceutical formulations and spiked human plasma samples. The percent recoveries were found to be in the range of 99.04–100.26% for bulk powder, 98.88–99.92% for pharmaceutical formulations and 94.22–98.48% for spiked human plasma. The results were verified by comparing with reference literature HPLC method and were found in good agreement.  相似文献   
255.
Calcium substituted strontium hexaferrite CaxSr1−xFe12O19 (x=0.0−0.6) nanoparticles are synthesized by chemical co-precipitation method. The synthesized samples are characterized by Fourier Transform Infrared (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy, Transmission Electron Microscopy, DC electrical resistivity and dielectric measurements. FTIR data of uncalcined sample shows that nitrate ions are present which disappeared on calcination at 920 °C. The XRD data shows that a single hexagonal magnetoplumbite phase is formed in samples in which the calcium content, x, is ≤0.20. However, a nonmagnetic phase (α-Fe2O3) in addition to the hexagonal phase is also present in samples with x>0.20. The average crystallite size is found between 17 and 29 nm. The DC electrical resistivity increases with increase of calcium content up to level of x=0.2 but decreased on further addition of calcium. The enhanced resistivity of the calcium doped material has potential applications in microwave devices. The variations of dielectric constant and dielectric loss angle are explained on the basis of Maxwell-Wagner and Koops models.  相似文献   
256.
A numerical analysis is performed to analyze the bioconvective double diffusive micropolar non-Newtonian nanofluid flow caused by stationary porous disks.The consequences of the current flow problem are further extended by incorporating the Brownian and thermophoresis aspects. The energy and mass species equations are developed by utilizing the Cattaneo and Christov model of heat-mass fluxes. The flow equations are converted into an ordinary differential model by employing the appropriate variab...  相似文献   
257.
Background: Type 2 diabetes mellitus (DM2) is a chronic and sometimes fatal condition which affects people all over the world. Nanotherapeutics have shown tremendous potential to combat chronic diseases—including DM2—as they enhance the overall impact of drugs on biological systems. Greenly synthesized silver nanoparticles (AgNPs) from Catharanthus roseus methanolic extract (C. AgNPs) were examined primarily for their cytotoxic and antidiabetic effects. Methods: Characterization of C. AgNPs was performed by UV–vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and atomic force microscopy (AFM). The C. AgNPs were trialed on Vero cell line and afterwards on an animal model (rats). Results: The C. AgNPs showed standard structural and functional characterization as revealed by FTIR and XRD analyses. The zetapotential analysis indicated stability while EDX analysis confirmed the formation of composite capping with Ag metal. The cytotoxic effect (IC50) of C. AgNPs on Vero cell lines was found to be 568 g/mL. The animal model analyses further revealed a significant difference in water intake, food intake, body weight, urine volume, and urine sugar of tested rats after treatment with aqueous extract of C. AgNPs. Moreover, five groups of rats including control and diabetic groups (NC1, PC2, DG1, DG2, and DG3) were investigated for their blood glucose and glycemic control analysis. Conclusions: The C. AgNPs exhibited positive potential on the Vero cell line as well as on experimental rats. The lipid profile in all the diabetic groups (DG1-3) were significantly increased compared with both of the control groups (p < 0.05). The present study revealed the significance of C. AgNPs in nanotherapeutics.  相似文献   
258.
Alzheimer’s disease is the most common neurodegenerative disease, characterized by memory loss and cognitive dysfunction. Raspberry fruits contain polyphenols which have antioxidant and anti-inflammatory properties. In this study, we used molecular imprinting technology to efficiently isolate phenolic components from the raspberry ethyl acetate extracts. Six phenolic components (ellagic acid, tiliroside, kaempferol-3-o-rutoside, gallic acid, ferulic acid and vanillic acid) were identified by UPLC-Q-TOF-MS analysis. Molecular docking was used to predict the anti-inflammatory effects and anti-Alzheimer’s potential of these isolated compounds, which showed a good binding ability to diseases and related proteins. However, the binding energy and docking fraction of ellagic acid, tiliroside, and kaempferol-3-o-rutoside were better than those of gallic acid, ferulic acid and vanillic acid. Additionally, by studying the effects of these six phenolic components on the LPS-induced secretion of inflammatory mediators in murine microglial (BV2) cells, it was further demonstrated that they were all capable of inhibiting the secretion of NO, IL-6, TNF-α, and IL-1β to a certain extent. However, ellagic acid, tiliroside, and kaempferol-3-o-rutoside have better inhibitory effects compared to others. The results obtained suggest that the phenolic components extracted from ethyl acetate extracts of raspberry by molecularly imprinted polymers have the potential to inhibit the progression of Alzheimer’s disease.  相似文献   
259.
The multifunctional zinc oxide nanoparticles are synthesized using a cost-effective, efficient, eco-friendly, simple, and clean synthesis approach. Herein, we reported the antibacterial and wound healing potential of zinc oxide nanoparticles (ZnO-NPs) prepared using psyllium gel (PG) as the reducing and stabilizing agent. The PG-mediated zinc oxide nanoparticles (PG-ZnO-NPs) were characterized using UV–Vis, photoluminescence (PL), FTIR, XRD, Raman, and SEM. UV–Vis spectral studies confirmed the surface plasmonic resonance (SPR) band at 364 nm. PL results demonstrated the fluorescent or emission nature of PG-ZnO-NPs. FTIR analysis confirmed characteristic peaks at 873.82 and 619.88 cm−1 due to the tetrahedral coordination of zinc and the formation of the Zn-O bond. XRD and Raman confirm the formation of PG-ZnO-NPs, whereas SEM analysis revealed PG-ZnO-NPs are rod-shaped, having hexagonal prism-like bases, and EDX exhibited the elemental composition of PG-ZnO-NPs. The as-synthesized PG-ZnO-NPs possessed prominent microbicidal potential against gram-positive (Bacillus subtilis and Bacillus licheniformis) and gram-negative (Escherichia coli and Salmonella shigella) bacterial strains in terms of zone of inhibition (ZOI), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). In vivo biological investigations with mice show that the synthesized PG-ZnO-NPs possess outstanding biocompatibility and wound healing potential. PG-ZnO-NPs dressing significantly speeds up full-thickness wound repair by triggering a decrease in MMP-1 and MMP-2 and escalating the mRNA levels of collagen types (I & III) and fibronectin. Thus, our work validates that the inclusion of PG-ZnO-NPs in dressing shows excellent potential for acute wound management.  相似文献   
260.
Studying the excited-state decay process is crucial for materials research because what happens to the excited states determines how effective the materials are for many applications, such as photoluminescence and photocatalysis. The high computational cost, however, limits the use of high-accuracy theoretical approaches for analyzing research systems containing a significant number of atoms. Time-dependent density functional theory is a practical approach to investigate the photorelaxation processes in these systems, as demonstrated in the studies of the excited-state decays of heptazine-water clusters and adenine in water described in this review. Here, we highlight the importance of conical intersections in the excited-state decay processes of these systems using the aforementioned examples. In the heptazine-water and adenine-water systems, these intersections are associated with the photocatalytic water splitting reaction, caused by a barrierless reaction called water to adenine electron-driven proton transfer. We expect the result would be helpful for researching the excited-state decays of graphitic carbon nitride materials and DNA nucleotides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号