首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30004篇
  免费   4052篇
  国内免费   3973篇
化学   20710篇
晶体学   254篇
力学   1711篇
综合类   158篇
数学   3610篇
物理学   11586篇
  2024年   43篇
  2023年   449篇
  2022年   722篇
  2021年   829篇
  2020年   889篇
  2019年   898篇
  2018年   849篇
  2017年   703篇
  2016年   1176篇
  2015年   1059篇
  2014年   1291篇
  2013年   1765篇
  2012年   2135篇
  2011年   3434篇
  2010年   2097篇
  2009年   2015篇
  2008年   1564篇
  2007年   1368篇
  2006年   1312篇
  2005年   1340篇
  2004年   1992篇
  2003年   1254篇
  2002年   1137篇
  2001年   915篇
  2000年   516篇
  1999年   636篇
  1998年   557篇
  1997年   482篇
  1996年   415篇
  1995年   376篇
  1994年   312篇
  1993年   654篇
  1992年   645篇
  1991年   472篇
  1990年   449篇
  1989年   410篇
  1988年   156篇
  1987年   88篇
  1986年   94篇
  1985年   77篇
  1984年   77篇
  1983年   42篇
  1982年   44篇
  1981年   27篇
  1980年   29篇
  1979年   16篇
  1977年   16篇
  1976年   18篇
  1975年   16篇
  1973年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
The biodegradability of phtalic acid esters in marine and freshwater environments was characterized by their binding free energy with corresponding degrading enzymes. According to comprehensive biodegradation effects weights, the binding free energy values were converted into dimensionless efficacy coefficient using ratio normalization method. Then, considering comprehensive dual biodegradation effects value and the structural parameters of PAEs in both marine and freshwater environments, a 3D-QSAR pharmacophore model was constructed, five PAE derivatives (DBP−COOH, DBP−CHO, DBP−OH, DINP−NH2, and DINP−NO2) were screened out based on their environmental friendliness, functionality and stability. The prediction of biodegradation effects on five PAE derivatives by biodegradation models in marine and freshwater environment increased by 15.90 %, 15.84 %, 27.21 %, 12.33 %, and 8.32 %, and 21.57 %, 15.21 %, 20.99 %, 15.10 %, and 9.74 %, respectively. By simulating the photodegradation path of the PAE derivative molecular, it was found that DBP−OH can generate .OH and provides free radicals for the photodegradation of microplastics in the environment.  相似文献   
12.
We investigate terahertz radiation(T-rays) from a pentacene organic diode at room temperature. The quantum chemistry calculation for frequency-related Huang–Rhys factor of pentacene is also carried out. The results demonstrate that the T-rays can come from a bending vibration of pentacene skeleton after the energy of pentacene exciton transferring to the vibrational excited state via electron–phonon coupling. Frequency and natural bond orbital analytics of pentacene and its derivatives are performed in order to explain the result and develop new materials to get higher emission. This work provides a new way to produce T-rays with a simple device at room temperature.  相似文献   
13.
Photoactivated chemotherapy (PACT) has appealing merits over traditional chemotherapy as well as photodynamic therapy (PDT) by virtue of its spatial and temporal control on drug activity and oxygen-independent mechanisms of action. However, the short photoactivation wavelengths, e.g., visible light–activated Ru(II)-based PACT agents, limit the clinical application severely. In this work, a facile construction of supramolecular nanoparticles from a poly(ethylene glycol) (PEG)-modified [Ru(dip)2(py-SO3)]+ (abbreviated as Ru-PEG, dip = 4,7-diphenyl-1,10-phenanthroline, py-SO3 = pyridine-2-sulfonate) and 1,3-phenylenebis(pyren-1-ylmethanone) (BP) is shown. While Ru-PEG may undergo photoinduced ligand dissociation and release anticancer species of [Ru(dip)2(H2O)2]2+, BP has extremely large two-photon absorption cross sections (δ2) in the NIR region and intense fluorescence over the wavelengths where Ru-PEG has strong absorption. Thus, two-photon excitation of BP followed by an efficient Förster resonance energy transfer (FRET) from BP to Ru-PEG may lead to a potent inactivation against cisplatin-resistant cancer cells and 3D multicellular tumor spheroids (MCTSs). The residue fluorescence of BP also allows the cellular uptake of the particles to be visualized. This work provides a universal and convenient strategy to realize theranostic PACT in the ideal phototherapeutic window of 650–900 nm.  相似文献   
14.
In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated biomaterial is Hyriopsis cumingii, a typical limnetic shell, which consists of two different structural layers, a prismatic "pillar"structure and a nacreous "brick and mortar" structure. The prismatic layer looks like a "pillar forest" with variationsection pillars sized on the order of several tens of microns.The nacreous material looks like a "brick wall" with bricks sized on the order of several microns. Both pillars and bricks are composed of nanoparticles. The mechanical properties of the hierarchical biomaterial are measured by using the nanoindentation test. Hardness and modulus are measured for both the nacre layer and the prismatic layer, respectively.The nanoindentation size effects for the hierarchical structural materials are investigated experimentally. The results show that the prismatic nanostructured material has a higher stiffness and hardness than the nacre nanostructured material.In addition, the nanoindentation size effects for the hierarchical structural materials are described theoretically, by using the trans-scale mechanics theory considering both strain gradient effect and the surface/interface effect. The modeling results are consistent with experimental ones.  相似文献   
15.
The design and exploration of efficient, stable and environmentally compatible organic emitters for an electrochemiluminescence (ECL) sensor is a promising topic. Herein, a novel environmentally-friendly luminophore, ZnBCBTP@MWCNTs, were fabricated via self-assembly of porphyrin molecules (ZnBCBTP) onto multi-walled carbon nanotubes (MWCNTs). The resulting luminophore ZnBCBTP@MWCNTs displayed not only the highly ECL property and but also the good accelerated electron mobility. Then, a label-free ECL biosensor based ZnBCBTP@MWCNTs was constructed for the ultrasensitive detection of uric acid. Excitingly, this proposed ECL biosensor performed a good linear relationship in the range of 0–300 μM with a low detection limit of 1.4 μM, thus offering another reliable and feasible sensing platform for clinical bioanalysis with good selectivity, stability, and repeatability.  相似文献   
16.
A new A, D-seco limonoid, named 12-acetyloxyperforatin (1), along with three known ones, were isolated from the leaves of Harrisonia perforata. Their structures were elucidated on the basis of spectroscopic analysis, including extensive NMR techniques and computational modelling. These compounds showed no inhibitory activity against the 11β-HSD1 enzyme.  相似文献   
17.
18.
The biologically active alkaloid muscimol is present in fly agaric mushroom (Amanita muscaria), and its structure and action is related to human neurotransmitter γ-aminobutyric acid (GABA). The current study reports on determination of muscimol form present in water solution using multinuclear 1H and 13C nuclear magnetic resonance (NMR) experiments supported by density functional theory molecular modeling. The structures of three forms of free muscimol molecule both in the gas phase and in the presence of water solvent, modeled by polarized continuous model, and nuclear magnetic isotropic shieldings, the corresponding chemical shifts, and indirect spin–spin coupling constants were calculated. Several J-couplings observed in proton and carbon NMR spectra, not available before, are reported. The obtained experimental spectra, supported by theoretical calculations, favor the zwitterion form of muscimol in water. This structure differs from NH isomer, previously determined in dimethyl sulfoxide (DMSO) solution. In addition, positions of signals C3 and C5 are reversed in both solvents.  相似文献   
19.
20.
Fully utilizing solar energy for catalysis requires the integration of conversion mechanisms and therefore delicate design of catalyst structures and active species. Herein, a MOF crystal engineering method was developed to controllably synthesize a copper–ceria catalyst with well-dispersed photoactive Cu-[O]-Ce species. Using the preferential oxidation of CO as a model reaction, the catalyst showed remarkably efficient and stable photoactivated catalysis, which found practical application in feed gas treatment for fuel cell gas supply. The coexistence of photochemistry and thermochemistry effects contributes to the high efficiency. Our results demonstrate a catalyst design approach with atomic or molecular precision and a combinatorial photoactivation strategy for solar energy conversion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号