全文获取类型
收费全文 | 629936篇 |
免费 | 5065篇 |
国内免费 | 1634篇 |
专业分类
化学 | 319252篇 |
晶体学 | 9241篇 |
力学 | 32039篇 |
综合类 | 27篇 |
数学 | 82999篇 |
物理学 | 193077篇 |
出版年
2021年 | 5833篇 |
2020年 | 6288篇 |
2019年 | 7173篇 |
2018年 | 9686篇 |
2017年 | 9813篇 |
2016年 | 13573篇 |
2015年 | 7284篇 |
2014年 | 12336篇 |
2013年 | 27943篇 |
2012年 | 21634篇 |
2011年 | 25750篇 |
2010年 | 19417篇 |
2009年 | 19376篇 |
2008年 | 24370篇 |
2007年 | 24127篇 |
2006年 | 21902篇 |
2005年 | 19563篇 |
2004年 | 18336篇 |
2003年 | 16515篇 |
2002年 | 16337篇 |
2001年 | 17517篇 |
2000年 | 13468篇 |
1999年 | 10444篇 |
1998年 | 8979篇 |
1997年 | 8900篇 |
1996年 | 8333篇 |
1995年 | 7468篇 |
1994年 | 7549篇 |
1993年 | 7270篇 |
1992年 | 7829篇 |
1991年 | 8221篇 |
1990年 | 7943篇 |
1989年 | 7856篇 |
1988年 | 7649篇 |
1987年 | 7385篇 |
1986年 | 7110篇 |
1985年 | 9109篇 |
1984年 | 9525篇 |
1983年 | 7959篇 |
1982年 | 8189篇 |
1981年 | 7749篇 |
1980年 | 7325篇 |
1979年 | 7957篇 |
1978年 | 8186篇 |
1977年 | 8163篇 |
1976年 | 8141篇 |
1975年 | 7776篇 |
1974年 | 7570篇 |
1973年 | 7931篇 |
1972年 | 5833篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Milan V. Patel Samir A. Patel Arabinda Ray Rajni M. Patel 《Journal of polymer science. Part A, Polymer chemistry》2004,42(20):5227-5234
Copolymers of monomers 2,4‐dichlorophenyl methacrylate (2,4‐DMA) and methyl methacrylate (MMA) were synthesized with different monomer feed ratios using toluene as a solvent and 2,2′‐azobisisobutyronitrile (AIBN) as an initiator at 70 °C. The copolymers were characterized by IR‐spectroscopy, and copolymer composition was determined with UV‐spectroscopy. The linearization method of Fineman–Ross was employed to obtain the monomer reactivity ratios. The molecular weights and polydispersity indexes were determined by gel permeation chromatography (GPC). Thermogravimetric analyses of polymers were carried out in nitrogen atmosphere. The homo‐ and copolymers were tested for their antimicrobial properties against selected microorganisms. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5227–5234, 2004 相似文献
82.
Strain hardening of polycarbonate in the glassy state: Influence of temperature and molecular weight
L. E. Govaert T. A. Tervoort 《Journal of polymer science. Part A, Polymer chemistry》2004,42(11):2041-2049
This study is concerned with the temperature and molecular weight dependence of the strain-hardening behavior of polycarbonate. It is shown that the strain-hardening modulus reduces with increasing temperature and decreasing molecular weight. This result is interpreted in terms of temperature accelerated relaxation of the entanglement network. Moreover, it is shown that frozen-in orientations, induced by homogeneous deformations above the glass transition temperature, lead to anisotropic yield behavior that can be fully rationalized (and modelled) in terms of a superimposed stress contribution of the prestrained network. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2041–2049, 2004 相似文献
83.
Accreditation and Quality Assurance - 相似文献
84.
Gottfried Mayer Vitali Vogel Bas G. G. Lohmeijer Jean‐Franois Gohy Jacomina A. Van Den Broek Winfried Haase Ulrich S. Schubert Dieter Schubert 《Journal of polymer science. Part A, Polymer chemistry》2004,42(17):4458-4465
Micelles prepared from amphiphilic block copolymers in which a poly(styrene) segment is connected to a poly(ethylene oxide) block via a bis‐(2,2′:6′,2″‐terpyridine‐ruthenium) complex have been intensely studied. In most cases, the micelle populations were found to be strongly heterogeneous in size because of massive micelle/micelle aggregation. In the study reported in this article we tried to improve the homogeneity of the micelle population. The variant preparation procedure developed, which is described here, was used to prepare two “protomer”‐type micelles: PS20‐[Ru]‐PEO70 and PS20‐[Ru]‐PEO375. The dropwise addition of water to a solution of the compounds in dimethylformamide was replaced by the controlled addition of water by a syringe pump. The resulting micelles were characterized by sedimentation velocity and sedimentation equilibrium analyses in an analytical ultracentrifuge and by transmission electron microscopy of negatively stained samples. Sedimentation analysis showed virtually unimodal size distributions, in contrast to the findings on micelles prepared previously. PS20‐[Ru]‐PEO70 micelles were found to have an average molar mass of 318,000 g/mol (corresponding to 53 protomers per micelle, which is distinctly less than after micelle preparation by the standard method) and an average hydrodynamic diameter (dh) of 18 nm. For PS20‐[Ru]‐PEO375 micelles, the corresponding values were M = 603,000 g/mol (31 protomers per micelle) and dh = 34 nm. The latter particles were found to be identical to the “equilibrium” micelles prepared in pure water. Both micelle types had a very narrow molar mass distribution but a much broader distribution of s values and thus of hydrodynamic diameters. This indicates a conformational heterogeneity that is stable on the time scale of sedimentation velocity analysis. The findings from electron microscopy were in disagreement with those from the sedimentation analysis both in average micelle diameter and in the width of the distributions, apparently because of imperfections in the staining procedure. The preparation procedure described also may be useful in micelle formation from other types of protomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4458–4465, 2004 相似文献
85.
X. H. Li Y. Z. Meng S. J. Wang A. Varada Rajulu S. C. Tjong 《Journal of Polymer Science.Polymer Physics》2004,42(4):666-675
The composites of biodegradable poly(propylene carbonate) (PPC) reinforced with short Hildegardia populifolia natural fiber were prepared by melt mixing followed by compression molding. The mechanical properties, thermal properties, and morphologies of the composites were studied via static and dynamic mechanical measurements, thermogravimetric analysis, and scanning electron microscopy (SEM) techniques, respectively. Static tensile tests showed that the stiffness and tensile strength of the composites increased with an increasing fiber content. However, the elongation at break and the energy to break decreased dramatically with the addition of short fiber. The relationship between the experimental results and the compatibility or interaction between the PPC matrix and fiber was correlated. SEM observations indicated good interfacial contact between the short fiber and PPC matrix. Thermogravimetric analysis revealed that the introduction of short Hildegardia populifolia fiber led to a slightly improved thermooxidative stability of PPC. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 666–675, 2004 相似文献
86.
87.
G. G. Bandyopadhyay S. S. Bhagawan K. N. Ninan Sabu Thomas 《Journal of Polymer Science.Polymer Physics》2004,42(8):1417-1432
The viscoelastic properties of binary blends of nitrile rubber (NBR) and isotactic polypropylene (PP) of different compositions have been calculated with mean‐field theories developed by Kerner. The phase morphology and geometry have been assumed, and experimental data for the component polymers over a wide temperature range have been used. Hashin's elastic–viscoelastic analogy principle is used in applying Kerner's theory of elastic systems for viscoelastic materials, namely, polymer blends. The two theoretical models used are the discrete particle model (which assumes one component as dispersed inclusions in the matrix of the other) and the polyaggregate model (in which no matrix phase but a cocontinuous structure of the two is postulated). A solution method for the coupled equations of the polyaggregate model, considering Poisson's ratio as a complex parameter, is deduced. The viscoelastic properties are determined in terms of the small‐strain dynamic storage modulus and loss tangent with a Rheovibron DDV viscoelastometer for the blends and the component polymers. Theoretical calculations are compared with the experimental small‐strain dynamic mechanical properties of the blends and their morphological characterizations. Predictions are also compared with the experimental mechanical properties of compatibilized and dynamically cured 70/30 PP/NBR blends. The results computed with the discrete particle model with PP as the matrix compare well with the experimental results for 30/70, 70/30, and 50/50 PP/NBR blends. For 70/30 and 50/50 blends, these predictions are supported by scanning electron microscopy (SEM) investigations. However, for 30/70 blends, the predictions are not in agreement with SEM results, which reveal a cocontinuous blend of the two. Predictions of the discrete particle model are poor with NBR as the matrix for all three volume fractions. A closer agreement of the predicted results for a 70/30 PP/NBR blend and the properties of a 1% maleic anhydride modified PP or 3% phenolic‐modified PP compatibilized 70/30 PP/NBR blend in the lower temperature zone has been observed. This may be explained by improved interfacial adhesion and stable phase morphology. A mixed‐cure dynamically vulcanized system gave a better agreement with the predictions with PP as the matrix than the peroxide, sulfur, and unvulcanized systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1417–1432, 2004 相似文献
88.
A. Zubeldia M. Larraaga P. Remiro I. Mondragon 《Journal of Polymer Science.Polymer Physics》2004,42(21):3920-3933
The microstructure and fracture behavior of epoxy mixtures containing two monomers of different molecular weights were studied. The variation of the fracture toughness by the addition of other modifiers was also investigated. Several amounts of high‐molecular‐weight diglycidyl ether of bisphenol A (DGEBA) oligomer were added to a nearly pure DGEBA monomer. The mixtures were cured with an aromatic amine, showing phase separation after curing. The curing behavior of the epoxy mixtures was investigated with thermal measurements. A significant enhancement of the fracture toughness was accompanied by slight increases in both the rigidity and strength of the mixtures that corresponded to the content of the high‐molecular‐weight epoxy resin. Dynamic mechanical and atomic force microscopy measurements indicated that the generated two‐phase morphology was a function of the content of the epoxy resin added. The influence of the addition of an oligomer or a thermoplastic on the morphologies and mechanical properties of both epoxy‐containing mixtures was also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3920–3933, 2004 相似文献
89.
Seok‐Ho Hwang Kyung Soo Yoo Charles N. Moorefield Sang‐Won Lee George R. Newkome 《Journal of Polymer Science.Polymer Physics》2004,42(8):1487-1495
A series of metallodendrimers, assembled by means of bis(terpyridinyl)Ru(II) connectivity on poly(propylene imine) dendrimer scaffolds, with homogeneous or heterogeneous surfaces, were prepared. Differential scanning calorimetry and thermogravimetric analysis were used to determine their thermal behavior, glass‐transition temperatures, and the decomposition kinetics and temperatures; no synergy effects for these properties were observed for the heterogeneously surfaced constructs in contrast to the corresponding homogeneously coated materials, which exhibited different values depending on their surface functionalities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1487–1495, 2004 相似文献
90.
E.‐A. McGonigle J. J. Liggat R. A. Pethrick S. D. Jenkins J. H. Daly D. Hayward 《Journal of Polymer Science.Polymer Physics》2004,42(15):2916-2929
For as‐extruded amorphous and biaxially orientated polyester films based on poly(ethylene terephthalate), poly(ethylene naphthalate), and copolymers containing poly(ethylene terephthalate) and poly(ethylene naphthalate) moieties, permeability, diffusion, and solubility coefficients are interpreted in terms of chain mobility. The influence of polymer morphology is determined by comparison of the data for as‐extruded amorphous sheets and materials produced with different biaxial draw ratios. The crystallinities of the samples were assessed using differential scanning calorimetry and density measurements. Changes in mobility at a molecular level were investigated using dielectric spectroscopy and dynamic mechanical thermal analysis. The study, in conjunction with our earlier work, leads to the conclusion that the key to understanding differences in gas transport is the difference in local chain motions rather than in free volume. This was illustrated by the permeability results for He, Ar, N2, and O2 in the range of polyesters. However, the permeability of CO2 was found to require alternative explanations because of polymer–penetrant interactions. For biaxially oriented samples, the differences in diffusivity are not only due to differences in local chain motions, but also additional constraints resulting from the increased crystallinity and chain rigidity—which also act to hinder segmental mobility. The effectiveness of the reduction in permeability in the biaxially oriented films is consequently determined by the ability of the polymer chains to effectively align and form crystalline structures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2916–2929, 2004 相似文献