首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7171篇
  免费   324篇
  国内免费   42篇
化学   5535篇
晶体学   58篇
力学   95篇
数学   585篇
物理学   1264篇
  2023年   45篇
  2022年   121篇
  2021年   156篇
  2020年   121篇
  2019年   135篇
  2018年   103篇
  2017年   92篇
  2016年   248篇
  2015年   217篇
  2014年   271篇
  2013年   456篇
  2012年   540篇
  2011年   629篇
  2010年   377篇
  2009年   338篇
  2008年   490篇
  2007年   423篇
  2006年   423篇
  2005年   346篇
  2004年   296篇
  2003年   256篇
  2002年   290篇
  2001年   129篇
  2000年   141篇
  1999年   74篇
  1998年   51篇
  1997年   66篇
  1996年   64篇
  1995年   52篇
  1994年   37篇
  1993年   39篇
  1992年   43篇
  1991年   25篇
  1990年   37篇
  1989年   39篇
  1988年   18篇
  1987年   20篇
  1986年   15篇
  1985年   31篇
  1984年   25篇
  1983年   20篇
  1982年   21篇
  1981年   14篇
  1980年   16篇
  1979年   12篇
  1978年   17篇
  1977年   20篇
  1976年   12篇
  1975年   14篇
  1970年   17篇
排序方式: 共有7537条查询结果,搜索用时 15 毫秒
81.
Using high-resolution transmission electron microscopy and electron energy-loss spectroscopy, we show that beryllium oxide crystallizes in the planar hexagonal structure in a graphene liquid cell by a wet-chemistry approach. These liquid cells can feature van-der-Waals pressures up to 1 GPa, producing a miniaturized high-pressure container for the crystallization in solution. The thickness of as-received crystals is beyond the thermodynamic ultra-thin limit above which the wurtzite phase is energetically more favorable according to the theoretical prediction. The crystallization of the planar phase is ascribed to the near-free-standing condition afforded by the graphene surface. Our calculations show that the energy barrier of the phase transition is responsible for the observed thickness beyond the previously predicted limit. These findings open a new door for exploring aqueous-solution approaches of more metal-oxide semiconductors with exotic phase structures and properties in graphene-encapsulated confined cells.  相似文献   
82.
In this note we examine the relationships between p-hyponormal operators and the operator inequality . This leads to a method for generating examples of p-hyponormal operators which are not q-hyponormal for any . Our methods are also shown to have implications for the class of Furuta type inequalities.  相似文献   
83.
Carbon-free CuInSe2 (CIS) thin film with a dense microstructure has been prepared using a novel non-vacuum based fabrication route. CuxSy and In2Se3 binary nanoparticles, approximately 10 nm in size, were synthesized by a low temperature colloidal process. The precursor film was deposited using the coating ink formulated with the binary nanoparticles and pyridine, and then annealed in the rapid thermal annealing (RTA) chamber at 540 °C for 15 min under selenium (Se) atmosphere. Scanning electron micrographs, X-ray diffraction patterns and Raman spectra showed a phase pure carbon-free and dense CIS thin film was prepared in this method. A solar cell device fabricated using this CIS thin film showed the following photovoltaic characteristics: VOC = 350 mV, JSC = 24.72 mA cm−2, FF = 38.73% and η = 3.36% under standard AM 1.5 condition.  相似文献   
84.
We explore a connection between generalized uncertainty principle (GUP) and modified Ho?ava–Lifshitz (HL) gravity. The GUP density function may be replaced by the cutoff function for the renormalization group of modified Ho?ava–Lifshitz gravity. We find the GUP-corrected graviton propagators and compare these with tensor propagators in the HL gravity. Two are qualitatively similar, but the p5p5-term arisen from Cotton tensor is missed in the GUP-corrected graviton propagator.  相似文献   
85.
The carbamoylphosphosphonate silane (CMPO analogue; 2-(diphenylphosphoryl)-N-(3-(triethoxysilyl)propyl) acetamide) modified mesoporous silica was prepared via a post-synthesis grafting method for the effective purification of rare earth elements. The guest CMPO analogue was synthesized by direct coupling reaction of 2-(diphenylphosphoryl) acetic acid and 3-(triethoxysilyl)propan-1-amine. Various mesoporous silicates such as MCM-41, SBA-15, or amorphous silica nanoparticles were adopted as host materials. The resulting surface-modified mesoporous materials were characterized with respect to their structural integrity, surface area, and pore size and the concentration of the CMPO silane species. These CMPO functionalized periodic mesostructured silicates offer the potential of applications as catalysts, sensors, or environmental sorbents.  相似文献   
86.
We have produced nanophase metal clusters, (Fe)n, (Cr)n, (Mo)n and (W)n, by multiphoton decomposition of the corresponding metal carbonyls with a 10.6 μm CO2 laser in the presence of Ar and SF6. The size distribution was narrow and the average diameter was 6, 3.5, 2 and 1 nm for Fe, Cr, Mo and W clusters, respectively. The structure was found to be bcc for both Fe and Cr clusters, fcc for Mo clusters, and amorphous for W clusters (note that all the bulk metals have bcc structure). Considering the cluster sizes (9630, 1870, 230 and 30 for Fe, Cr, Mo and W clusters, respectively) estimated from their average diameters, it is likely that there exists a structural transition from fcc to bulk bcc with increasing cluster size in these metal clusters.  相似文献   
87.
The polycaprolactone (PCL)/starch blends were prepared by using the starch‐g‐PCL (SGCL) graft copolymers as compatibilizers, and their mechanical properties were correlated with the compatibilizing effect of the SGCL copolymers having various molecular structures. The modulus and strength of the PCL/starch blend were decreased, whereas the percent elongation and the toughness were increased remarkably with the addition of SGCL having appropriate graft structure. These property changes were analyzed in terms of the PCL crystallinity and the interfacial adhesion between the PCL matrix and starch dispersion phases, which were dominated by the compatibilizing effects of the SGCL copolymers. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2430–2438, 1999  相似文献   
88.
We describe a synthetic route for the high yield production of Au nanomaterials via a simple one step reduction process. Thenoyltrifluoroacetone was used as a reducing and stabilizing agent as well for the synthesis of gold nanoparticles. The reaction rate for the formation of Au nanoparticles using thenoyltrifluoroacetone was much faster than that of any other β-diketones such as acetylacetone. By simply varying the reaction temperature and the concentration, the shape and size of the resulting Au nanocrystals were easily controlled. The colloidal state of the Au nanocrystals in water lasts several weeks without any spectral changes.  相似文献   
89.
90.
The human organic anion transporter 4 (hOAT4) has been identified as the fourth isoform of OAT family. hOAT4 contributes to move several negatively charged organic compounds between cells and their extracellular milieu. The functional characteristics and regulatory mechanisms of hOAT4 remain to be elucidated. It is well known that caveolin plays a role in modulating proteins having some biological functions. To address this issue, we investigated the co-localization and interaction between hOAT4 and caveolin-1. hOAT4 and caveolin-1 (mRNA and protein expression) were observed in cultured human placental trophoblasts isolated from placenta. The confocal microscopy of immuno-cytochemistry using primary cultured human trophoblasts showed hOAT4 and caveolin-1 were co-localized at the plasma membrane of the cell. This finding was confirmed by Western blot analysis using isolated caveolae-enriched membrane fractions and immune-precipitates from the trophoblasts. When synthesized cRNA of hOAT4 along with scrambled- or antisense-oligodeoxynucleotide (ODN) of Xenopus caveolin-1 were co-injected to Xenopus oocytes, the [3H]estrone sulfate uptake was significantly decreased by the co-injection of antisense ODN but not by scrambled ODN. These findings suggest that hOAT4 and caveolin-1 share a cellular expression in the plasma membrane and caveolin-1 up-regulates the organic anionic compound uptake by hOAT4 under the normal physiological condition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号