首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   353篇
  免费   10篇
化学   230篇
晶体学   17篇
力学   18篇
数学   9篇
物理学   89篇
  2023年   2篇
  2022年   15篇
  2021年   7篇
  2020年   14篇
  2019年   7篇
  2018年   9篇
  2017年   6篇
  2016年   6篇
  2015年   12篇
  2014年   15篇
  2013年   26篇
  2012年   28篇
  2011年   39篇
  2010年   22篇
  2009年   24篇
  2008年   21篇
  2007年   20篇
  2006年   18篇
  2005年   19篇
  2004年   15篇
  2003年   13篇
  2002年   9篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1996年   2篇
  1995年   5篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1984年   1篇
排序方式: 共有363条查询结果,搜索用时 0 毫秒
11.
Isochrysis is a genus of marine algae without cell wall and capable of accumulating lipids. In this study, the lipid production potential of Isochrysis was assessed by comparing 15 Isochrysis strains with respect to their growth rate, lipid production, and fatty acid profiles. Three best strains were selected (lipid productivity, 103.0~121.7 mg L?1 day?1) and their lipid-producing capacities were further examined under different controlled parameters, e.g., growth phase, medium nutrient, and light intensity in laboratory cultures. Furthermore, the three Isochrysis strains were monitored in outdoor panel photobioreactors with various initial cell densities and optical paths, and the strain CS177 demonstrated the superior potential for outdoor cultivation. A two-stage semi-continuous strategy for CS177 was subsequently developed, where high productivities of biomass (1.1 g L?1 day?1) and lipid (0.35 g L?1 day?1) were achieved. This is a comprehensive study to evaluate the lipid-producing capability of Isochrysis strains under both indoor and outdoor conditions. Results of the present work lay a solid foundation for the physiological and biochemical responses of Isochrysis to various conditions, shedding light on the future utilization of this cell wall-lacking marine alga for biofuel production.  相似文献   
12.
Organic solvent-stable lipases have pronounced impact on industrial economy as they are involved in synthesis by esterification, interesterification, and transesterification. However, very few of such natural lipases have been isolated till date. A study of the recent past provided few pillars to rely on for this work. The three-dimensional structure, inclusive of the surface and active site, of 29 organic solvent-stable lipases was analyzed by subfamily classification and protein solvent molecular docking based on fast Fourier transform correlation approach. The observations revealed that organic solvent stability of lipases is their intrinsic property and unique with respect to each lipase. In this paper, factors like surface distribution of charged, hydrophobic, and neutral residues, interaction of solvents with catalytically immutable residues, and residues interacting with essential water molecules required for lipase activity, synergistically and by mutualism contribute to render a stable lipase organic solvent. The propensity of surface charge in relation to stability in organic solvents by establishing repulsive forces to exclude solvent molecules from interacting with the surface and prohibiting the same from gaining entry to the protein core, thus stabilizing the active conformation, is a new finding. It was also interesting to note that lipases having equivalent surface-exposed positive and negative residues were stable in a wide range of organic solvents, irrespective of their LogP values.  相似文献   
13.
To tackle the problems associated with membrane protein (MP) instability in detergent solutions, we designed a series of glycosyl‐substituted dicarboxylate detergents (DCODs) in which we optimized the polar head to clamp the membrane domain by including, on one side, two carboxyl groups that form salt bridges with basic residues abundant at the membrane–cytoplasm interface of MPs and, on the other side, a sugar to form hydrogen bonds. Upon extraction, the DCODs 8 b , 8 c , and 9 b preserved the ATPase function of BmrA, an ATP‐binding cassette pump, much more efficiently than reference or recently designed detergents. The DCODs 8 a , 8 b , 8 f , 9 a , and 9 b induced thermal shifts of 20 to 29 °C for BmrA and of 13 to 21 °C for the native version of the G‐protein‐coupled adenosine receptor A2AR. Compounds 8 f and 8 g improved the diffraction resolution of BmrA crystals from 6 to 4 Å. DCODs are therefore considered to be promising and powerful tools for the structural biology of MPs.  相似文献   
14.
The host–guest interaction of α-tocopherol (vitamin E) with p-sulfonatocalix[4]arene (p-SC4) in solution state is studied using emission and cyclic voltammetric techniques. The lipid soluble α-tocopherol (α-T) forms a solid complex with p-SC4. FTIR and NMR spectral analysis of the solid complex reveals the tight packing of α-T inside the cavity of p-SC4. The structural deformation is confirmed by XRD analysis. SEM images differentiate the highly porous gel like structure of vitamin E aggregate and the solid structure of the host–guest complex prepared. NOESY spectra confirm the tight penetration of α-T within the hydrophobic cavity of p-SC4.  相似文献   
15.
The title compounds, both C23H21ClN2OS, are isomeric, with (I) and (II) being the N‐3‐methyl­phenyl and N‐2‐methyl­phenyl derivatives, respectively. The dihedral angle between the 4‐chloro­phenyl group and the thio­phene ring in (II) [38.1 (1)°] is larger than that in (I) [7.1 (1)°], indicating steric repulsion between the chloro­phenyl and o‐toluidine groups in (II). In both compounds, an intramolecular N—H⋯N hydrogen bond forms a pseudo‐six‐membered ring, thus locking the molecular conformation. In the crystal structures, mol­ecules are connected via N—H⋯O hydrogen bonds, forming chains along the b axis in (I) and along the c axis in (II). Intermolecular C—H⋯O/S and π–π interactions are also observed in (II), but not in (I).  相似文献   
16.
Nano-crystalline sulfated zirconia catalyst, prepared by two-step sol–gel method, has been studied for the solvent free self condensation of acetophenone to dypnone. The influence of calcination temperature on the structural, textural and catalytic activity of sulfated zirconia has been analyzed. The surface acidity along with the structural and textural features of the catalyst influenced its activity. The conversion of acetophenone was found to be effected by the variation in the reaction and calcination temperature, however, the dypnone selectivity was not affected much. The catalyst calcined at 650 °C, showed maximum dypnone selectivity of 92% with 68.2% acetophenone conversion at 170 °C after 7 h. The catalyst was reused up to five cycles with marginal decrease in acetophenone conversion, however, without losing its selectivity for dypnone.  相似文献   
17.
The catalytic activity of nano-crystalline sulfated zirconia catalyst, prepared by sol–gel method and characterized by various analytical tools, was evaluated for the esterification of caprylic acid with different short chain alcohols. The lower concentration of catalyst (0.5 wt%) exhibited 96–98% conversion of caprylic acid with methanol and 100% selectivity for methyl caprylate at 60 °C. The conversion was decreased with increasing carbon chain of alcohols namely with ethanol, n-propanol and n-butanol at 60 °C but increased significantly (91–98%) at higher reaction temperature. The selectivity for respective alkyl caprylate was observed to be 100% irrespective of the alcohol used. The activity of the catalyst was slightly decreased with successive five reaction cycles due to the water formed during the reaction.  相似文献   
18.
Mn inclusion in the oxide based diluted magnetic semiconductor Zn1−x Mn x O (x = 0.04, 0.06, 0.08, and 0.10) grown by standard high temperature solid state reaction technique has been studied. The local and average structure of Zn1−x Mn x O was characterized by the super resolution technique maximum entropy method and pair distribution function analysis using the X-ray powder data. Magnetic studies on this material using a Vibrating Sample Magnetometer were also carried out to ascertain the doping level in Zn1−x Mn x O.  相似文献   
19.
An efficient procedure for the oxidation of primary and secondary alcohols to aldehydes and ketones, respectively, with molecular oxygen under ambient conditions has been achieved. By applying catalytic amounts of Pd(OAc)2 in the presence of tertiary phosphine oxides (O?PR3) as ligands, a variety of substrates are selectively oxidized without formation of ester byproducts. Spectroscopic investigations and DFT calculations suggest stabilization of the active palladium(II) catalyst by phosphine oxide ligands.  相似文献   
20.
The cleavage of α-hydroxy tert-butyldimethylsilyl ether to diol takes place efficiently with LAH. It has been proposed that the reaction proceeds via intramolecular hydride transfer from the alkoxy aluminium hydride. In order to substantiate this, reduction of TBDMS ether with LAH in a variety of substrates was studied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号