首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   3篇
化学   132篇
晶体学   11篇
数学   4篇
物理学   4篇
  2023年   4篇
  2022年   2篇
  2021年   5篇
  2020年   6篇
  2018年   4篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   1篇
  2013年   7篇
  2012年   10篇
  2011年   14篇
  2010年   10篇
  2009年   6篇
  2008年   5篇
  2007年   9篇
  2006年   8篇
  2005年   2篇
  2004年   2篇
  2003年   11篇
  2002年   9篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   3篇
  1980年   1篇
  1977年   2篇
排序方式: 共有151条查询结果,搜索用时 15 毫秒
51.
The crystal structure of the compound bis [2,4-diamino-5-(p-chlorophenyl)-6-ethyl pyrimidinium hydrogen sulfate] monohydrate was studied by X-ray diffraction methods. The compound crystallises in orthorhombic system, space group P212121, a=18.531(2) ?, b=16.190(2) ?, c=10.777(2) ?, V=3233.3(8), Z=4. The asymmetric unit shows the presence of two crystallographically independent pyrimethamine molecules, two hydrogen sulfate anions, and a water molecule. The hydrogen sulfate anions form a cyclic hydrogen bonded motif R2 2(8) with the 2-amino pyrimidine of the respective protonated pyrimethamine cations, through N–H···O hydrogen bonds. Thus the sulfate anions mimic the role of carboxylate anions observed in many aminopyrimidine-carboxylate interactions. This motif self assembles through DDAA array of quadruple hydrogen bonds, N–H···Cl, O–H···O and C–H···O hydrogen bonds.Supplementary material CCDC-293607 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 IEZ, UK; fax: C44 (0) 1223-336033; e-mail: deposit@ccdc.cam.ac.uk].  相似文献   
52.
The title compound contains two benzimidazole nitrogens and one thioether sulfur atom, which are potential sites for metal ion binding. Both the benzimidazole nitrogens of the molecule are protonated. The benzimidazole rings are almost parallel to each other, the dihedral angle being 6.9(1)°. The C–S–C bond angle is 100.6(2)° and the C–S–C–C torsion angles are –75.9(3)° and –80.6(3)°, leading to gauche conformation which is one of the favored conformations in the crystalline state of simple monothioethers.  相似文献   
53.
Growth of magnetron sputtered Pt/CeO2 thin films on Si and Si3N4 were characterized by X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and X‐ray photoelectron spectroscopy (XPS). Interaction of Pt/CeO2 films with Si on Si and Si3N4 substrates was extensively investigated by XPS. XRD studies show that films are oriented preferentially to (200) direction of CeO2. XPS results show that Pt is mainly present in +2 oxidation state in Pt/CeO2/Si film, whereas Pt4+ predominates in Pt/CeO2/Si3N4 film. Concentration of Pt4+ species is more than four times on Si3N4 substrate as compared with that on Si. Ce is present as both +4 and +3 oxidation states in Pt/CeO2 films deposited on Si and Si3N4 substrates, but concentration of Ce3+ species is more in Pt/CeO2/Si film. Interfacial reaction between CeO2 and Si substrate is controlled in the presence of Pt. Pt/Ce concentration ratio decreases in Pt/CeO2/Si3N4 film upon successive sputtering, whereas this ratio decreases initially and then increases in Pt/CeO2/Si film. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
54.
The 13C NMR spectra of 62 oxanes (tetrahydropyrans) with and without methyl substituents at various ring positions, some of them bearing in addition (or instead) ethyl, vinyl, ethynyl, carbomethoxy and methylol substituents at C-2, have been recorded, and the 294 resulting chemical shifts have been correlated by multiple linear regression analysis. Axial and equatorial α-, β-, γ-, δ-, gem- and vic-parameters for shifts caused by methyl groups at all ring positions, and similar parameters for Et,—CH?CH2,—C?CH, CO2Me and CH2OH groups at C-2, are reported. Standard deviations of the parameters are, in most cases, within 0.3 ppm and the agreement of calculated and experimental shifts is excellent. This is probably the largest parameter set of this type extant. 13C NMR spectra of a number of additional substituted tetrahydropyrans, and of 3,6-dihydro-2H-pyrans and 3,4-dihydro-2H-pyrans, are tabulated and discussed.  相似文献   
55.
The title compound, [C4H7N4O+, C7H5O6S. H2O] contains one 2, 6-diamino-4-oxopyrimidinium cation, one sulfosalicylate anion and a water molecule. The crystal structure was determined by single crystal X-ray diffraction. This compound crystallized in the orthorhombic system; space group Pna21 with the unit cell parameters a = 13.402(3) Å, b = 16. 221(3) Å, c = 6.714(2) Å, V = 1459.6(6), Z = 4. The sulfonic acid group has protonated the aminopyrimidine moiety. The protonated N1 atom and N4 amino group are hydrogen bonded to the keto group (O1) of the neighbouring pyrimidine forming a six-membered ring with graph-set notation R2 1(6) and a supramolecular chain along the c-axis. This supramolecular chain is further strengthened by one of the sulfonate oxygen atoms (O3), bridging the pyrimidines via hydrogen bonded rings, R3 2(10) involving N(3)–H(3)···O(3) and N(2)–H(2B)···O(3) hydrogen bonds. The other two oxygen atoms of the sulfonate groups are bridged by water molecules via O-H···O hydrogen bonds constituting a supramolecular chain. The water molecule also acts as hydrogen bond acceptor with respect to the carboxyl group.  相似文献   
56.
Zinc thiocyanate complexes have been found to be biologically active compounds. Zinc is also an essential element for the normal function of most organisms and is the main constituent in a number of metalloenzyme proteins. Pyrimidine and aminopyrimidine derivatives are biologically very important as they are components of nucleic acids. Thiocyanate ions can bridge metal ions by employing both their N and S atoms for coordination. They can play an important role in assembling different coordination structures and yield an interesting variety of one‐, two‐ and three‐dimensional polymeric metal–thiocyanate supramolecular frameworks. The structure of a new zinc thiocyanate–aminopyrimidine organic–inorganic compound, (C6H9ClN3)2[Zn(NCS)4]·2C6H8ClN3·2H2O, is reported. The asymmetric unit consist of half a tetrathiocyanatozinc(II) dianion, an uncoordinated 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidinium cation, a 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine molecule and a water molecule. The ZnII atom adopts a distorted tetrahedral coordination geometry and is coordinated by four N atoms from the thiocyanate anions. The ZnII atom is located on a special position (twofold axis of symmetry). The pyrimidinium cation and the pyrimidine molecule are not coordinated to the ZnII atom, but are hydrogen bonded to the uncoordinated water molecules and the metal‐coordinated thiocyanate ligands. The pyrimidine molecules and pyrimidinium cations also form base‐pair‐like structures with an R22(8) ring motif via N—H…N hydrogen bonds. The crystal structure is further stabilized by intermolecular N—H…O, O—H…S, N—H…S and O—H…N hydrogen bonds, by intramolecular N—H…Cl and C—H…Cl hydrogen bonds, and also by π–π stacking interactions.  相似文献   
57.
Understanding the effects of substituents on the spectra of chlorins is essential for a wide variety of applications. Recent developments in synthetic methodology have made possible systematic studies of the properties of the chlorin macrocycle as a function of diverse types and patterns of substituents. In this paper, the spectral, vibrational and excited-state decay characteristics are examined for a set of synthetic chlorins. The chlorins bear substituents at the 5,10,15 (meso) positions or the 3,13 (beta) positions (plus 10-mesityl in a series of compounds) and include 24 zinc chlorins, 18 free base (Fb) analogs and one Fb or zinc oxophorbine. The oxophorbine contains the keto-bearing isocyclic ring present in the natural photosynthetic pigments (e.g. chlorophyll a). The substituents cause no significant perturbation to the structure of the chlorin macrocycle, as evidenced by the vibrational properties investigated using resonance Raman spectroscopy. In contrast, the fluorescence properties are significantly altered due to the electronic effects of substituents. For example, the fluorescence wavelength maximum, quantum yield and lifetime for a zinc chlorin bearing 3,13-diacetyl and 10-mesityl groups (662 nm, 0.28, 6.0 ns) differ substantially from those of the parent unsubstituted chlorin (602 nm, 0.062, 1.7 ns). Each of these properties of the lowest singlet excited state can be progressively stepped between these two extremes by incorporating different substituents. These perturbations are associated with significant changes in the rate constants of the decay pathways of the lowest excited singlet state. In this regard, the zinc chlorins with the red-most fluorescence also have the greatest radiative decay rate constant and are expected to have the fastest nonradiative internal conversion to the ground state. Nonetheless, these complexes have the longest singlet excited-state lifetime. The Fb chlorins bearing the same substituents exhibit similar fluorescence properties. Such combinations of factors render the chlorins suitable for a range of applications that require tunable coverage of the solar spectrum, long-lived excited states and red-region fluorescence.  相似文献   
58.
The optical absorption spectra and redox properties are presented for 24 synthetic zinc chlorins and 18 free base analogs bearing a variety of 3,13 (beta) and 5,10,15 (meso) substituents. Results are also given for a zinc and free base oxophorbine, which contain the keto-bearing isocyclic ring present in the natural photosynthetic pigments such as chlorophyll a. Density functional theory calculations were carried out to probe the effects of the types and positions of substituents on the characteristics (energies, electron distributions) of the frontier molecular orbitals. A general finding is that the 3,13 positions are more sensitive to the effects of auxochromes than the 5,10,15 positions. The auxochromes investigated (acetyl>ethynyl>vinyl>aryl) cause a significant redshift and intensification of the Qy band upon placement at the 3,13 positions, whereas groups at the 5,10,15 positions result in much smaller redshifts that are accompanied by a decrease in relative Qy intensity. In addition, the substituent-induced shifts in first oxidation and reduction potentials faithfully track the energies of the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO), respectively. The calculations show that the LUMO is shifted more by substituents than the HOMO, which derives from the differences in the electron densities of the two orbitals at the substituent sites. The trends in the substituent-induced effects on the wavelengths and relative intensities of the major features (By, Bx, Qx, Qy) in the near-UV to near-IR absorption bands are well accounted for using Gouterman's four-orbital model, which incorporates the effects of the substituents on the HOMO-1 and LUMO+1 in addition to the HOMO and LUMO. Collectively, the results and analysis presented herein and in the companion paper provide insights into the effects of substituents on the optical absorption, redox and other photophysical properties of the chlorins. These insights form a framework that underpins the rational design of chlorins for applications encompassing photomedicine and solar-energy conversion.  相似文献   
59.
Chlorophyll a and chlorophyll b exhibit distinct spectra yet differ only in the nature of a single substituent (7-methyl versus 7-formyl, respectively). Two complementary approaches have been developed for the synthesis of 7-substituted chlorins. The first approach is a de novo route wherein 2,9-dibromo-5-p-tolyldipyrromethane (Eastern half) and 9-formyl-2,3,4,5-tetrahydro-1,3,3-trimethyldipyrrin (Western half) undergo acid-catalyzed condensation followed by metal-mediated oxidative cyclization. The resulting zinc chlorin is sterically uncongested and bears (1) a geminal dimethyl group in the reduced, pyrroline ring, (2) a bromo substituent at the 7-position, and (3) a p-tolyl group at the 10-position. The second approach entails regioselective 7-bromination of a 10,15-diarylchlorin that lacks a substituent at the 5-position. In an extension of this latter approach, a 5,15-diarylchlorin that lacks a substituent at the 10-position undergoes regioselective bromination at the 8-position. The introduction of a TIPS-ethynyl, acetyl, or formyl group at the 7-position was achieved using Pd-catalyzed reactions with the corresponding 7-bromochlorin. In the 10-p-tolyl-substituted zinc chlorins, the series of substituents (7-TIPS-ethynyl, 7-acetyl, 7-formyl) progressively causes (1) a bathochromic shift in the absorption maximum of the B band (405 to 426 nm) and (2) a hypsochromic shift in the position of the Qy band (605 to 598 nm). The trends mirror those for chlorophyll b versus chlorophyll a but are of lesser magnitude. Taken together, the facile access to chlorins that bear auxochromes at the 7-position enables wavelength tunability and provides the foundation for fundamental spectroscopic studies.  相似文献   
60.
We have previously demonstrated that conjugation of small molecule ligands to small interfering RNAs (siRNAs) and anti-microRNAs results in functional siRNAs and antagomirs in vivo. Here we report on the development of an efficient chemical strategy to make oligoribonucleotide-ligand conjugates using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) or click reaction. Three click reaction approaches were evaluated for their feasibility and suitability for high-throughput synthesis: the CuAAC reaction at the monomer level prior to oligonucleotide synthesis, the solution-phase postsynthetic "click conjugation", and the "click conjugation" on an immobilized and completely protected alkyne-oligonucleotide scaffold. Nucleosides bearing 5'-alkyne moieties were used for conjugation to the 5'-end of the oligonucleotide. Previously described 2'- and 3'-O-propargylated nucleosides were prepared to introduce the alkyne moiety to the 3' and 5' termini and to the internal positions of the scaffold. Azido-functionalized ligands bearing lipophilic long chain alkyls, cholesterol, oligoamine, and carbohydrate were utilized to study the effect of physicochemical characteristics of the incoming azide on click conjugation to the alkyne-oligonucleotide scaffold in solution and on immobilized solid support. We found that microwave-assisted click conjugation of azido-functionalized ligands to a fully protected solid-support bound alkyne-oligonucleotide prior to deprotection was the most efficient "click conjugation" strategy for site-specific, high-throughput oligonucleotide conjugate synthesis tested. The siRNA conjugates synthesized using this approach effectively silenced expression of a luciferase gene in a stably transformed HeLa cell line.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号