首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   7篇
化学   122篇
力学   7篇
数学   36篇
物理学   99篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2017年   1篇
  2016年   3篇
  2015年   8篇
  2014年   5篇
  2013年   17篇
  2012年   8篇
  2011年   15篇
  2010年   15篇
  2009年   4篇
  2008年   18篇
  2007年   12篇
  2006年   14篇
  2005年   16篇
  2004年   15篇
  2003年   5篇
  2002年   6篇
  2001年   5篇
  2000年   4篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1995年   7篇
  1994年   4篇
  1993年   4篇
  1992年   7篇
  1991年   3篇
  1990年   5篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1984年   8篇
  1983年   1篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1974年   4篇
  1972年   1篇
排序方式: 共有264条查询结果,搜索用时 15 毫秒
101.
The correlated behavior of electrons determines the structure and optical properties of molecules, semiconductors, and other systems. Valuable information on these correlations is provided by measuring the response to femtosecond laser pulses, which probe the very short time period during which the excited particles remain correlated. The interpretation of four-wave-mixing techniques, commonly used to study the energy levels and dynamics of many-electron systems, is complicated by many competing effects and overlapping resonances. Here we propose a coherent optical technique, specifically designed to provide a background-free probe for electronic correlations in many-electron systems. The proposed signal pulse is generated only when the electrons are correlated, which gives rise to an extraordinary sensitivity. The peak pattern in two-dimensional plots, obtained by displaying the signal versus two frequencies conjugated to two pulse delays, provides a direct visualization and specific signatures of the many-electron wave functions.  相似文献   
102.
Surface-specific infrared signals obtained by subjecting the system to two infrared laser pulses are calculated for an admixture of CO and isotopic CO on Cu(100) by using molecular dynamics simulation based on a stability matrix formalism. The two-dimensional profiles of the signals in the frequency domain show both diagonal and cross peaks. The former peaks mainly arise from the overtones of the CO and isotopic CO, while the latter represent the couplings between those. As temperature is increased, the phases of cross peaks in a second-order infrared response function change significantly, while those of diagonal peaks are unchanged. The authors show that the phase shifts are originated from the potential anharmonicities due to the electronic interaction between adsorbates. Using a model with two dipole moments, they find that the frustrated rotational mode activated with temperature has effects on the anharmonicity. These results indicate that two-dimensional infrared surface spectroscopy reveals the anharmonic couplings between adsorbates and surface atoms or between adsorbates which cannot be observed in first-order spectroscopy.  相似文献   
103.
By combining time-dependent density functional theory (TDDFT) and molecular dynamics (MD) simulations, we calculate the ultraviolet absorption and circular dichroism (CD) of a cyclic dipeptide, cyclo(L-Pro-D-Tyr), in the 185-300 nm region. The absorption is dominated by the phenol chromophore of tyrosine. The CD spectrum shows both phenol and amide units transitions. A crude coherent two-dimensional ultraviolet spectrum (2DUV) calculated by neglecting the two-excitation states shows a cross-peak between two transitions of the phenol in the tyrosine side chain. Additional cross-peaks between the side chain and the backbone are observed when using a chirality-induced pulse polarization configuration.  相似文献   
104.
We generalize the elementary methods presented in several examples in the book [FZ] to obtain the Thomae formulae for general fully ramified Z n curves.  相似文献   
105.
We demonstrate how stochastic transitions between molecular configurations with opposite senses of chirality may be probed by 2D optical signals with specific pulse polarization configurations. The third-order optical response of molecular dimers (such as biphenyls) with dynamical axial chirality is calculated to order of k(2) in the wavevector of light. Spectroscopic signatures of equilibrium chirality fluctuations are predicted for three dynamical models (Ornstein-Uhlenbeck, two-state jump, and diffusion in double well) of the dihedral angle that controls the chirality.  相似文献   
106.
We have utilized the Green's function method to derive an explicit solution for the problem of sequential decay involving multiple continua with constant coupling between adjacent continua. This model system is applicable for theoretical studies of dynamics of photodissociation, predissociation and electronic quenching of polyatomic molecules.  相似文献   
107.
Mayer-sampling Monte Carlo (MSMC) has enabled computation of higher-order virial coefficients than previously possible for a variety of potential models, but it is not required for computation of the entire virial coefficient for models that are spherically symmetric: approximations that result from the hypernetted-chain (HNC) or Percus–Yevick (PY) integral-equation theories in conjunction with the compressibility equation (c) or virial equation (v) can be computed quickly by fast Fourier transforms. For the fourth and fifth virial coefficients of the Lennard–Jones potential (with parameters σ and ε), we demonstrate that the corrections to each of the four approximations (HNC(c), HNC(v), PY(c), and PY(v)) are faster to compute to a desired precision by MSMC than the full coefficient itself, with the exception of the PY(v) correction at fifth order, and that the optimal decomposition with regard to precision can be identified using a fraction of the steps required to obtain precise virial coefficients. At reduced temperatures kT/ε greater than 4, the PY(c) correction is fastest to compute by MSMC at both fourth and fifth orders. For lower temperatures, the HNC(v) decomposition is most efficient at fourth order, while the HNC(c) decomposition is most efficient at fifth order. These results are specific to the Lennard–Jones potential, but the method for determining the optimal decomposition is applicable to any spherically symmetric potential.  相似文献   
108.
We study a blood testing procedure for detecting viruses like HIV, HBV and HCV. In this procedure, blood samples go through two screening steps. The first test is ELISA (antibody Enzyme Linked Immuno-Sorbent Assay). The portions of blood which are found not contaminated in this first phase are tested in groups through PCR (Polymerase Chain Reaction). The ELISA test is less sensitive than the PCR test and the PCR tests are considerably more expensive. We model the two test phases of blood samples as services in two queues in series; service in the second queue is in batches, as PCR tests are done in groups. The fact that blood can only be used for transfusions until a certain expiration date leads, in the tandem queue, to the feature of customer impatience. Since the first queue basically is an infinite server queue, we mainly focus on the second queue, which in its most general form is an S-server M/G [k,?K]/S?+?G queue, with batches of sizes which are bounded by k and K. Our objective is to maximize the expected profit of the system, which is composed of the amount earned for items which pass the test (and before their patience runs out), minus costs. This is done by an appropriate choice of the decision variables, namely, the batch sizes and the number of servers at the second service station. As will be seen, even the simplest version of the batch queue, the M/M [k,?K]/1?+?M queue, already gives rise to serious analytical complications for any batch size larger than 1. These complications are discussed in detail, and handled for K?=?2. In view of the fact that we aim to solve realistic optimization problems for blood screening procedures, these analytical complications force us to take recourse to either a numerical approach or approximations. We present a numerical solution for the queue length distribution in the M/M [k,?K]/S?+?M queue and then formulate and solve several optimization problems. The power-series algorithm, which is a numerical-analytic method, is also discussed.  相似文献   
109.
We investigate a new symmetry of the large deviation function of certain time-integrated currents in non-equilibrium systems. The symmetry is similar to the well-known Gallavotti-Cohen-Evans-Morriss-symmetry for the entropy production, but it concerns a different functional of the stochastic trajectory. The symmetry can be found in a restricted class of Markov jump processes, where the network of microscopic transitions has a particular structure and the transition rates satisfy certain constraints. We provide three physical examples, where time-integrated observables display such a symmetry. Moreover, we argue that the origin of the symmetry can be traced back to time-reversal if stochastic trajectories are grouped appropriately.  相似文献   
110.
The effect of particle-nonconserving processes on the steady state of driven diffusive systems is studied within the context of a generalized ABC model. It is shown that in the limit of slow nonconserving processes, the large deviation function of the overall particle density can be computed by making use of the steady-state density profile of the conserving model. In this limit one can define a chemical potential and identify first order transitions via Maxwell's construction, similarly to what is done in equilibrium systems. This method may be applied to other driven models subjected to slow nonconserving dynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号