In the light of superior interaction between pyridine unit and perovskite,a facile star-shaped triphenylamine-based hole transport material(HTM)incorporating pyridine core(coded as H-Pyr)is designed and synthesized.A reference HTM with benzene core,coded as H-Ben,is also prepared for a comparative study.The effects of varying core on HTMs are investigated by comparing the photophysical,electrochemical and hole mobility properties.It is found that pyridine core exhibits better conjunction and decreased dihedral angles with triphenylamine side arms than that of benzene,leading to obviously better hole mobility and well-matched work function.The perovskite film prepared on H-Pyr also shows improved crystallization than on H-Ben.Photoluminescence and electrochemical impedance studies indicate improved charge extraction and reduced recombination in the H-Pyr-based perovskite solar cells.Consequently,H-Pyr-based device exhibits higher efficiency than H-Ben-based one.After doping with a Lewis acid,tris(pentafluorophenyl)borane,H-Pyr-based device delivers a champion efficiency of 17.09%,which is much higher compared with 12.14% of the device employing conventional poly(3,4-ethy lenedioxythiophene)polystyrene sulfonate(PEDOT:PSS)as HTM.Moreover,the H-Pyr-based device displays good long-term stability that the power conversion efficiency remains over 80% of the initial value after storage in ambient(relative humidity=50±5%)for 20 days. 相似文献
AbstractTwo 1,3-bis(thiophen-2-yl)?5,7-bis(2-ehtylhexyl)benzo-[1,2-c:4,5-c]-dithiophene-4,8-dione (BDD) based small molecules, SM1 and SM2 are designed and synthesized by incorporating benzodithiophene (BDT) central core, BDD dual accepting units and 3-ethyl rhodamine as endcap group with various number of BDT units. We systematically investigated the synthesis, optical and electrochemical properties, and photovoltaic characteristics of these donor materials. The number of BDT units have a significant influence on Jsc due to interconnected structure and results in a broader absorption on thin film. The inverted devices employed for both small molecules exhibited power conversion efficiencies of 0.41% for SM1 and 0.82% for SM2. 相似文献
In the under developed countries, the people of far-flung rural areas still depend to a large extent upon herbal medicines. At the foundation of usage of herbal medicine is the experience of thousands of years. The present paper deals with the characterisation of exotic fruits for essential and toxic elements. The samples include Morus nigra, Morus alba, Salvadora persica and Carissa opaca (from low and high altitude). Two standardizations of neutron activation analysis, that is, semi-absolute k0-instrumental neutron activation analysis (k0-INAA) and epithermal neutron activation analysis (ENAA) were employed for the quantification of elements. The analysis methodologies were validated by analyzing the IAEA-336 (lichen) and NIST-SRM-1572 (citrus leaves). Sixteen elements including Br, Ca, Cl, Co, Cr, Fe, I, K, Mg, Mn, Na, Rb, Sb, Sc Sr, and Zn were determined in all samples. Daily intakes of various elements from the samples were measured and compared with the dietary reference intakes. Additionally, principal component analysis was performed to extract information regarding samples and elements. 相似文献
Nonlinear Dynamics - The Kadomtsev–Petviashvili equation used in this article is used to model shallow water waves with weakly nonlinear restorative forces as well as waves in a strong... 相似文献
In Part I of this series, we presented a new theoretical approach for computing the effective permeability of porous media that are under deformation by a hydrostatic pressure P. Beginning with the initial pore-size distribution (PSD) of a porous medium before deformation and given the Young’s modulus and Poisson’s ratio of its grains, the model used an extension of the Hertz–Mindlin theory of contact between grains to compute the new PSD that results from applying the pressure P to the medium and utilized the updated PSD in the effective-medium approximation (EMA) to estimate the effective permeability. In the present paper, we extend the theory in order to compute the electrical conductivity of the same porous media that are saturated by brine. We account for the possible contribution of surface conduction, in order to estimate the electrical conductivity of brine-saturated porous media. We then utilize the theory to update the PSD and, hence, the pore-conductance distribution, which is then used in the EMA to predict the pressure dependence of the electrical conductivity. Comparison between the predictions and experimental data for twenty-six sandstones indicates agreement between the two that ranges from excellent to good.
In contrast to the approach of coupling a nonlinear oscillator that represents the lift force with the cylinder’s equation of motion to predict the amplitude of vortex-induced vibrations, we propose and show that the displacement can be directly predicted by a nonlinear oscillator without a need for a force model. The advantages of the latter approach include reducing the number of equations and, subsequently, the number of coefficients to be identified to predict displacements associated with vortex-induced vibrations. The implemented single-equation model is based on phenomenological representation of different components of the transverse force as required to initiate the vibrations and to limit their amplitude. Three different representations for specific flow and cylinder parameters yielding synchronization for Reynolds numbers between 104 and 114 are considered. The method of multiple scales is combined with data from direct numerical simulations to identify the parameters of the proposed models. The variations in these parameters with the Reynolds number, reduced velocity or force coefficient over the synchronization regime are determined. The predicted steady-state amplitudes are validated against those obtained from high-fidelity numerical simulations. The capability of the proposed models in assessing the performance of linear feedback control strategy in reducing the vibrations amplitude is validated with performance as determined from numerical simulations.
The present theoretical assessment deals with the peristaltic-ciliary transport of a developing embryo within a fallopian tubal fluid in the human fallopian tube. A mathematical model of peristalsis-cilia induced flow of a linearly viscous fluid within a fallopian tubal fluid in a finite two-dimensional narrow tube is developed. The lubrication approximation theory is used to solve the resulting partial differential equation. The expressions for axial and radial velocities, pressure gradient, stream function, volume flow rate, and time mean volume flow rate are derived. Numerical integration is performed for the appropriate residue time over the wavelength and the pressure difference over the wavelength. Moreover, the plots of axial velocity, the appropriate residue time over wavelength, the vector, the pressure difference over wavelength, and the streamlines are displayed and discussed for emerging parameters and constants. Salient features of the pumping characteristics and the trapping phenomenon are discussed in detail. Furthermore, a comparison between the peristaltic flow and the peristaltic-ciliary flow is made as the special case. Relevance of the current results to the transport of a developing embryo within a fallopian tubal fluid from ampulla to the intramural in the fallopian tube is also explored. It reveals the fact that cilia along with peristalsis helps to complete the required mitotic divisions while transporting the developing embryo within a fallopian tubal fluid in the human fallopian tube. 相似文献
In this article, the merging flow of the stagnation point and the stretching (or shrinking) flows for the Powell-Eyring fluid (one of the non-Newtonian fluids) in the presence of magnetic field is formulated and analyzed mathematically. An analytical solution was developed on the basis of the homotopy analysis method. The effect of the Hartmann number on fluid-velocity and skin-friction is examined. It is observed that the intensive magnetic field reduces the growth of the reverse/secondary flow which is generated after the mixing of the stagnation-point and shrinking-sheet flows. The magnetic force dominates on the viscous force for stretching as well as for shrinking flows. Furthermore, the magnetic force intensifies the axial velocity of the fluids (the Newtonian as well as the Powell-Eyring fluids) but it decays the transverse-velocity of the fluids. Present results are validated with the existing results for the Newtonian fluids and found comparable with negligible errors. 相似文献