首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1480篇
  免费   59篇
化学   1057篇
晶体学   19篇
力学   41篇
数学   111篇
物理学   311篇
  2023年   24篇
  2022年   38篇
  2021年   41篇
  2020年   42篇
  2019年   52篇
  2018年   41篇
  2017年   34篇
  2016年   60篇
  2015年   44篇
  2014年   70篇
  2013年   102篇
  2012年   143篇
  2011年   138篇
  2010年   65篇
  2009年   52篇
  2008年   74篇
  2007年   82篇
  2006年   66篇
  2005年   57篇
  2004年   45篇
  2003年   31篇
  2002年   40篇
  2001年   16篇
  2000年   14篇
  1999年   10篇
  1998年   9篇
  1997年   11篇
  1996年   16篇
  1995年   9篇
  1994年   6篇
  1993年   9篇
  1992年   9篇
  1991年   2篇
  1990年   3篇
  1989年   6篇
  1988年   9篇
  1987年   2篇
  1986年   5篇
  1985年   4篇
  1984年   5篇
  1983年   4篇
  1982年   3篇
  1981年   5篇
  1980年   2篇
  1979年   8篇
  1978年   8篇
  1977年   2篇
  1976年   4篇
  1973年   4篇
  1969年   3篇
排序方式: 共有1539条查询结果,搜索用时 15 毫秒
871.
872.
The growing energy demand with the widespread use of smart portable electronics, as well as an exponential increase in demand for smart batteries for electric vehicles, entails the development of efficient portable batteries with high energy density and safe power storage systems. Li-ion batteries arguably have superior energy density to all other traditional batteries. Developing mechanically robust solid-state electrolytes (SSEs) for lithium-ion conduction for an efficient portable energy storage unit is vital to empower this technology and overcome the safety constraints of liquid electrolytes. Herein, we report the formation of self-assembled organic nanosheets (SONs) utilizing positional isomers of small organic molecules (AM-2 and AM-3) for use as SSEs for lithium-ion conduction. Solvent-assisted exfoliation of the bulk powder yielded SONs having near-atomic thickness (∼4.5 nm) with lateral dimensions in the micrometer range. In contrast, self-assembly in the DMF/water solvent system produced a distinct flower-like morphology. Thermodynamic parameters, crystallinity, elemental composition, and nature of H-bonding for two positional isomers are established through various spectroscopic and microscopic studies. The efficiency of the lithium-ion conducting properties is correlated with factors like nanostructure morphology, ionic scaffold, and locus of the functional group responsible for forming the directional channel through H-bonding in the positional isomer. Amongst the three different morphologies studied, SONs display higher ion conductivity. In between the cationic and zwitterionic forms of the monomer, integration of the cationic scaffold in the SON framework led to higher conductivity. Amongst the two positional isomers, the meta-substituted carboxyl group forms a more rigid directional channel through H-bonding to favor ionic mobility and accounts for the highest ion conductivity of 3.42 × 10−4 S cm−1 with a lithium-ion transference number of 0.49 at room temperature. Presumably, this is the first demonstration that signifies the importance of the cationic scaffold, positional isomers, and nanostructure morphologies in improving ionic conductivity. The ion-conducting properties of such SONs having a guanidinium-core may have significance for other interdisciplinary energy-related applications.

Self-assembled organic nanosheets (SONs) having a near-atomic thickness (∼4.5 nm) are obtained through exfoliation. Among two positional isomers of the guanidinium-core analogue used for SONs, one shows greatly improved Li+ ion conductivity.  相似文献   
873.
A miscible homopolymer–copolymer pair viz., poly(ethyl methacrylate) (PEMA)–poly(styrene‐co‐butyl acrylate) (SBA) is reported. The miscibility has been studied using differential scanning calorimetry. While 1 : 1 (w/w) blends with SBA containing 23 and 34 wt % styrene (ST) become miscible only above 225 and 185 °C respectively indicating existence of UCST, those with SBA containing 63 wt % ST is miscible at the lowest mixing temperature (i.e., Tg's) but become immiscible when heated at ca 250 °C indicating the existence of LCST. Miscibility for blends with SBA of still higher ST content could not be determined by this method because of the closeness of the Tg's of the components. The miscibility window at 230 °C refers to the two copolymer compositions of which one with the lower ST content is near the UCST, while the other with the higher ST content is near the LCST. Using these compositions and the mean field theory binary interaction parameters between the monomer residues have been calculated. The values are χST‐BA = 0.087 and χEMA‐BA = 0.013 at 230 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 369–375, 2000  相似文献   
874.
This study for the first time discovered miscibility in the binary blend of semicrystalline poly(ethylene oxide) (PEO) with amorphous poly(benzyl methacrylate) (PBzMA). Differential scanning calorimetry, optical and scanning electron microscopy, and infrared spectroscopy were performed to characterize and demonstrate miscibility in the PEO/PBzMA system. The glass‐transition behavior and Fourier transform infrared results suggest that the intermolecular interactions between the pairs were likely nonspecific and at best comparable to those among the same constituent component. The melting‐point depression study yielded χ = −0.1, indicating a relatively low interaction strength. It is concluded that the phase behavior of the blend was miscibility with nonspecific interactions, mostly a matched polar–polar intermolecular attraction. PEO spherulitic crystallization in the blend is discussed to support the miscibility behavior. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 562–572, 2000  相似文献   
875.
876.
Cylindrically symmetric inhomogeneous cosmological model for bulk viscous fluid distribution with electromagnetic field is obtained. The source of the magnetic field is due to an electric current produced along the z-axis. F12 is the non-vanishing component of electromagnetic field tensor. To get the deterministic solution, it has been assumed that the expansion θ in the model is proportional to the shear σ. The values of cosmological constant for these models are found to be small and positive at late time, which are consistent with the results from recent supernovae Ia observations. Physical and geometric aspects of the models are also discussed in presence and absence of magnetic field.  相似文献   
877.
Magnetite nanoparticles with tunable gold or silver shell   总被引:7,自引:0,他引:7  
Fe3O4 nanoparticles with size approximately 13 nm have been prepared successfully in aqueous micellar medium at approximately 80 degrees C. To make Fe3O4 nanoparticles resistant to surface poisoning a new route is developed for coating Fe3O4 nanoparticles with noble metals such as gold or silver as shell. The shell thickness of the core-shell particles becomes tunable through the adjustment of the ratio of the constituents. Thus, the route yields well-defined core-shell structures of size from 18 to 30 nm with varying proportion of Fe3O4 to the noble metal precursor salts. These magnetic nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), FTIR, differential scanning calorimetry (DSC), Raman and temperature-dependent magnetic studies.  相似文献   
878.
Arsenic round the world: a review   总被引:44,自引:0,他引:44  
Mandal BK  Suzuki KT 《Talanta》2002,58(1):201-235
This review deals with environmental origin, occurrence, episodes, and impact on human health of arsenic. Arsenic, a metalloid occurs naturally, being the 20th most abundant element in the earth's crust, and is a component of more than 245 minerals. These are mostly ores containing sulfide, along with copper, nickel, lead, cobalt, or other metals. Arsenic and its compounds are mobile in the environment. Weathering of rocks converts arsenic sulfides to arsenic trioxide, which enters the arsenic cycle as dust or by dissolution in rain, rivers, or groundwater. So, groundwater contamination by arsenic is a serious threat to mankind all over the world. It can also enter food chain causing wide spread distribution throughout the plant and animal kingdoms. However, fish, fruits, and vegetables primarily contain organic arsenic, less than 10% of the arsenic in these foods exists in the inorganic form, although the arsenic content of many foods (i.e. milk and dairy products, beef and pork, poultry, and cereals) is mainly inorganic, typically 65-75%. A few recent studies report 85-95% inorganic arsenic in rice and vegetables, which suggest more studies for standardisation. Humans are exposed to this toxic arsenic primarily from air, food, and water. Thousands and thousands of people are suffering from the toxic effects of arsenicals in many countries all over the world due to natural groundwater contamination as well as industrial effluent and drainage problems. Arsenic, being a normal component of human body is transported by the blood to different organs in the body, mainly in the form of MMA after ingestion. It causes a variety of adverse health effects to humans after acute and chronic exposures such as dermal changes (pigmentation, hyperkeratoses, and ulceration), respiratory, pulmonary, cardiovascular, gastrointestinal, hematological, hepatic, renal, neurological, developmental, reproductive, immunologic, genotoxic, mutagenetic, and carcinogenic effects. Key research studies are needed for improving arsenic risk assessment at low exposure levels urgently among all the arsenic research groups.  相似文献   
879.
Nanomanipulation using near field photonics   总被引:1,自引:0,他引:1  
Erickson D  Serey X  Chen YF  Mandal S 《Lab on a chip》2011,11(6):995-1009
In this article we review the use of near-field photonics for trapping, transport and handling of nanomaterials. While the advantages of traditional optical tweezing are well known at the microscale, direct application of these techniques to the handling of nanoscale materials has proven difficult due to unfavourable scaling of the fundamental physics. Recently a number of research groups have demonstrated how the evanescent fields surrounding photonic structures like photonic waveguides, optical resonators, and plasmonic nanoparticles can be used to greatly enhance optical forces. Here, we introduce some of the most common implementations of these techniques, focusing on those which have relevance to microfluidic or optofluidic applications. Since the field is still relatively nascent, we spend much of the article laying out the fundamental and practical advantages that near field optical manipulation offers over both traditional optical tweezing and other particle handling techniques. In addition we highlight three application areas where these techniques namely could be of interest to the lab-on-a-chip community, namely: single molecule analysis, nanoassembly, and optical chromatography.  相似文献   
880.
The samples in the system Gd1‐xBaxCoO3 (x = 0.00, 0.10, 0.20) were prepared by chemical route. These samples form single‐phase materials, which were confirmed by XRD and TGA studies. The presence of interfacial polarization is responsible for high value of dielectric constant in these materials. The conductivity observed in Gd1‐xBaxCoO3 system may be due to mobile holes created by excitation of an electron from the π* band to an acceptor level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号