首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   6篇
化学   65篇
晶体学   2篇
数学   2篇
物理学   7篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   15篇
  2017年   7篇
  2016年   4篇
  2015年   1篇
  2014年   4篇
  2013年   11篇
  2012年   1篇
  2011年   6篇
  2010年   4篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  2003年   2篇
  2002年   1篇
排序方式: 共有76条查询结果,搜索用时 953 毫秒
21.
The interaction of [Nd(bpy)2Cl3·OH2], where bipy is 2,2′-bipyridine, with DNA has been studied by absorption, emission, and viscosity measurements. [Nd(bpy)2Cl3·OH2] showed absorption decreasing in charge transfer band with increasing of DNA. The binding constant, Kb has been determined by absorption measurement and found to be (1.5 ± 0.1) × 105 M?1. The fluorescent of [Nd(bpy)2Cl3·OH2] has been investigated in detail. The interaction was also studied by fluorescence quenching technique. The results of fluorescence titration revealed that DNA had the strong ability to quenching the intrinsic fluorescence of Nd(III) complex at 327 nm. The binding site number n, apparent binding constant Kb and the Stern–Volmer quenching constant KSV have been determined. Thermodynamic parameters have been calculated according to relevant fluorescent data and Van’t Hoff equation. Characterization of bonding mode has been studied. The results suggested that the major interaction mode between [Nd(bpy)2Cl3·OH2] and DNA was groove binding.  相似文献   
22.
A finite group G is called a Q1-group if all of its non-linear irreducible characters are rational valued. In this paper, we will find the general structure of a metabelian Q1-group.  相似文献   
23.
Research on Chemical Intermediates - Chitosan functionalized by triacid imide has been applied as an effective catalyst for the synthesis of benzodiazepines by one-pot reactions of...  相似文献   
24.
An enzymatic biosensor has been developed for the determination of selenate (SeO42−), in which selenate reductase (SeR) is chemically attached to a gold disk electrode by lipoic acid N-hydroxysuccinimide ester as linker, allowing the catalytic reduction of the SeO42− to SeO32−. Modification of the gold electrode was characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), and electrochemistry. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements were performed in different buffers for selenate determination. Under optimum conditions, the calibration curve was linear over the range 7.0–3900.0 μg L−1 with limits of detection and quantification of 4.97 and 15.56 μg L−1, respectively. The possible interference of the relevant oxyanions SO42−, NO3, NO2, PO43− and AsO43− in the determination of SeO42− was studied. Finally, the proposed biosensor was used to determine SeO42− with recovery between 95.2 and 102.4 % in different real water samples.  相似文献   
25.
Abstract

Miktoarm star copolymers are relatively considered to be a new and unique class of macromolecules, and are a new topical area due to the unique properties by varying their polymer arms. This macromolecules with the AmBn architecture, have m arms of polymer A and n arms of polymer B connected at one central junction point. Over the past decade, miktoarms have been used in biomedical applications such as drug delivery, gene delivery, tissue engineering, diagnosis, and antibacterial/antifouling biomaterials. The intensified interest in miktoarms is attributed to their unique topological structures and attractive physical/chemical properties, including low critical micelle concentration (CMC) in solutions, encapsulation capability, internal and peripheral functionality, and enhanced stimuli-responsiveness. This review outlines the advances in the use of miktoarms in drug delivery for their good performance in biocompatibility, biodegradability and sustained, controlled and targeted drug delivery during the past decade and some unique self-assembly behaviors of miktoarm star copolymers have been reported.  相似文献   
26.
Electrooxidation of alcohols including methanol, ethanol, and isopropanol is studied on the modified solid glassy carbon electrodes with various amounts of platinum nanoparticles (PtNPs) immobilized on a composite of functionalized multi-walled carbon nanotubes (MWCNTs) and chitosan in an acidic solution. Here the chitosan is available as a binder to tightly anchor Pt nanoparticles onto the MWCNTs surfaces. MWCNTs/chitosan composite support can significantly improve the activity of the catalyst for alcohol oxidation and reduce the Pt catalyst loading. The calculated electrochemical active surface area is 379.2 m2/g Pt for PtNP–MWCNT/chitosan. Cyclic voltammetry and chronoamperometry techniques are employed for catalytic activity evaluation. The effects of operational parameters including platinum loading, concentration of the corresponding alcohol, concentration of the acid solution, scanning rate, and the final limit of anodic potential on the performance of the electrodes are also investigated.  相似文献   
27.
We describe a nanosized Cd(II)-imprinted polymer that was prepared from 4-vinyl pyridine (the functional monomer), ethyleneglycol dimethacrylate (the cross-linker), 2,2′-azobisisobutyronitrile (the radical initiator), neocuproine (the ligand), and Cd(II) (the template ion) by precipitation polymerization in acetonitrile as the solvent. The imprinted polymer was characterized by X-ray diffraction, thermogravimetric analysis, differential thermal analysis, and scanning electron microscopy. The maximum adsorption capacity of the nanosized sorbent was calculated to be 64 mg g?1. Cadmium(II) was then quantified by FAAS. The relative standard deviation and limit of detection are 4.2 % and 0.2 μg L?1, respectively. The imprinted polymer displays improve selectivity for Cd(II) ions over a range of competing metal ions with the same charge and similar ionic radius. This nanosized sorbent is an efficient solid phase for selective extraction and preconcentration of Cd(II) in complex matrices. The method was successfully applied to the trace determination of Cd(II) in food and water samples.
Figure
We describe a nanosized ion-imprinted polymer (IIP) for the selective preconcentration of Cd(II) ions. The nanosized-IIP was characterized by X-ray diffraction, Fourier transform IR spectroscopy, thermogravimetric and differential thermal analysis, and by scanning electron microscopy.  相似文献   
28.
We have developed a new method for the microextraction and speciation of arsenite and arsenate species. It is based on ionic liquid dispersive liquid liquid microextraction and electrothermal atomic absorption spectrometry. Arsenite is chelated with ammonium pyrrolidinedithiocarbamate at pH 2 and then extracted into the fine droplets of 1-butyl-3-methylimidazolium bis(trifluormethylsulfonyl) imide which acts as the extractant. As(V) remains in the aqueous phase and is then reduced to As(III). The concentration of As(V) can be calculated as the difference between total inorganic As and As(III). The pH values, chelating reagent concentration, types and volumes of extraction and dispersive solvent, and centrifugation time were optimized. At an enrichment factor of 255, the limit of detection and the relative standard deviation for six replicate determinations of 1.0 μg?L?1 As(III) are 13 ng?L?1 and 4.9 %, respectively. The method was successfully applied to the determination of As(III) and As(V) in spiked samples of natural water, with relative recoveries in the range of 93.3–102.1 % and 94.5–101.1 %, respectively.
Figure
Speciation of arsenite and arsenate by ionic liquid dispersive liquid-liquid microextraction - electrothermal atomic absorption spectrometry  相似文献   
29.
A new and simple flow injection method followed by atomic absorption spectrometry has been developed for the indirect determination of ascorbic acid. The proposed method is based on oxidation of ascorbic acid to dehydroascorbic acid using a solid-phase manganese dioxide (30% m/m suspended on silica gel beads) reactor. The flow of the sample through the column reduces the MnO2 to Mn(II) in an acidic carrier stream of 6.3 mM HNO3 (pH 2.2) with flow rate of 4.0 ml/min at room temperature; Mn(II) is measured by atomic absorption spectrometry. The absorbance of Mn(II) is proportional to the concentration of ascorbic acid in the sample. The calibration curve was linear up to 30 mg/L, with a detection limit of 0.2 mg/L for a 220 microL injected sample volume. The developed procedure was found to be suitable for the determination of AsA in pharmaceuticals and foods with a relative standard deviation better than 1.09% and a sampling rate of about 95 h(-1). The results exhibit no interference from the presence of large amounts of organic compounds. The reliability of the method was established by parallel determination against the 2,6-dichlorophenol-indophenol methods.  相似文献   
30.
A novel modified glassy carbon electrode containing Ni(Me2(CH3CO)2[14]tetraenoN4) complex was used as an electrocatalytic sensor for the determination of L-ascorbic acid in pH = 6.6. The peak potential shifted to negative by 205 mV compared with that for a bare electrode in cyclic voltammograms. The calibration curve was linear up to 6.2 x 10(-3) M with a detection limit 3.1 x 10(-7) M and an RSD% better than 2.47%. This newly modified electrode was applied to commercial pharmaceutical tablets, injections and foods. The obtained results were identical to those obtained by the classical 2,6-dichlorophenolindophenol method.  相似文献   
[首页] « 上一页 [1] [2] 3 [4] [5] [6] [7] [8] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号