首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   4篇
化学   16篇
力学   2篇
数学   1篇
物理学   22篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2011年   3篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1988年   2篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
11.
12.
In this work, a new solid-phase microextraction fiber was prepared based on nitrogen-doped graphene (N-doped G). Moreover, a new strategy was proposed to solve problems dealt in direct coating of N-doped G. For this purpose, first, Graphene oxide (GO) was coated on Pt wire by electrophoretic deposition method. Then, chemical reduction of coated GO to N-doped G was accomplished by hydrazine and NH3. The prepared fiber showed good mechanical and thermal stabilities. The obtained fiber was used in two different modes (conventional headspace solid-phase microextraction and cold-fiber headspace solid-phase microextraction (CF-HS-SPME)). Both modes were optimized and applied for the extraction of benzene and xylenes from different aqueous samples. All effective parameters including extraction time, salt content, stirring rate, and desorption time were optimized. The optimized CF-HS-SPME combined with GC-FID showed good limit of detections (LODs) (0.3–2.3 μg/L), limit of quantifications (LOQs) (1.0–7.0 μg/L) and linear ranges (1.0–5000 μg/L). The developed method was applied for the analysis of benzene and xylenes in rainwater and some wastewater samples.  相似文献   
13.
3‐Alkyl‐6‐amino‐1,4‐dihydro‐4‐{[(1,2,3‐triazol‐4‐yl)methoxy]phenyl}pyrano[2,3‐c]pyrazole‐5‐carbonitrile derivatives were synthesized through a one‐pot five‐component condensation reaction.  相似文献   
14.
Movahed S  Li D 《Electrophoresis》2011,32(11):1259-1267
This article presents a numerical study of the electrokinetic transport phenomena (electroosmosis and electrophoresis) in a three-dimensional nanochannel with a circular cross-section. Due to the nanometer dimensions, the Boltzmann distribution of the ions is not valid in the nanochannels. Therefore, the conventional theories of electrokinetic flow through the microchannels such as Poisson-Boltzmann equation and Helmholtz-Smoluchowski slip velocity approach are no longer applicable. In the current study, a set of coupled partial differential equations including Poisson-Nernst-Plank equation, Navier-Stokes, and continuity equations is solved to find the electric potential field, ionic concentration field, and the velocity field in the three-dimensional nanochannel. The effects of surface electric charge and the radius of nanochannel on the electric potential, liquid flow, and ionic transport are investigated. Unlike the microchannels, the electric potential field, ionic concentration field, and velocity field are strongly size-dependent in nanochannels. The electric potential gradient along the nanochannel also depends on the surface electric charge of the nanochannel. More counter ions than the coions are transported through the nanochannel. The ionic concentration enrichment at the entrance and the exit of the nanochannel is completely evident from the simulation results. The study also shows that the flow velocity in the nanochannel is higher when the surface electric charge is stronger or the radius of the nanochannel is larger.  相似文献   
15.
Operational state of many miniaturized devices deals with flow field in microchannels. Pressure-driven flow (PDF) and electroosmotic flow (EOF) can be recognized as the two most important types of the flow field in such channels. EOF has many advantages in comparison with PDF, such as being vibration free and not requiring any external mechanical pumps or moving parts. However, the disadvantages of this type of flow such as Joule heating, electrophoresis demixing, and not being suitable for mobile devices must be taken into consideration carefully. By using mixed electroosmotic/pressure-driven flow, the role of EOF in producing desired velocity profile will be reduced. In this way, the advantages of EOF can be exploited, and its disadvantages can be prevented. Induced pressure gradient can be utilized in order to control the separation in the system. Furthermore, in many complicated geometries such as T-shape microchannels, turns may induce pressure gradient to the electroosmotic velocity. While analytical formulas are completely essential for analysis and control of any industrial and laboratory microdevices, lack of such formulas in the literature for solving Poisson–Boltzmann equation and predicting electroosmotic velocity field in rectangular domains is evident. In the present study, first a novel method is proposed to solve Poisson–Boltzmann equation (PBE). Subsequently, this solution is utilized to find the electroosmotic and the mixed electroosmotic/pressure-driven velocity profile in a rectangular domain of the microchannels. To demonstrate the accuracy of the presented analytical method in solving PBE and finding electroosmotic velocity, a general nondimensional example is analyzed, and the results are compared with the solution of boundary element method. Additionally, the effects of different nondimensional parameters and also aspect ratio of channels on the electroosmotic part of the flow field will be investigated.  相似文献   
16.
We use some fractal analysis methods to study river flow fluctuations. The result of the Multifractal Detrended Fluctuation Analysis (MF-DFA) shows that there are two crossover timescales at s∼12 and s∼130 months in the fluctuation function. We discuss how the existence of the crossover timescales are related to a sinusoidal trend. The first crossover is due to the seasonal trend and the value of second one is approximately equal to the well-known cycle of sun activity. Using Fourier Detrended Fluctuation Analysis, the sinusoidal trend is eliminated. The values of Hurst exponents of the runoff water of rivers without the sinusoidal trend show a long-range correlation behavior. For the Daugava river, the value of Hurst exponent is 0.52±0.01 and also we find that these fluctuations have multifractal nature. Comparing the MF-DFA results for the remaining data set of Daugava river to those for shuffled and surrogate series, we conclude that its multifractal nature is almost entirely due to the broadness of probability density function.  相似文献   
17.
18.
19.
A N-heterocyclic carbene–copper complex grafted on graphene oxide with an ionic liquid framework was prepared. The synthesis of (i) 1,2,3-triazole derivatives by ‘Click reaction’ and (ii) propargylamine derivatives by ‘A3 coupling reaction’ in aqueous media by this new catalyst were all successfully accomplished. The catalyst is characterized using infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, thermogravimetric analysis and energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and elemental analysis. The catalyst is reused in the ten reaction cycles without considerable loss of catalytic activity.

Graphical abstract

  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号