首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3404篇
  免费   239篇
  国内免费   197篇
化学   1998篇
晶体学   63篇
力学   103篇
综合类   26篇
数学   375篇
物理学   1275篇
  2023年   54篇
  2022年   65篇
  2021年   68篇
  2020年   80篇
  2019年   80篇
  2018年   94篇
  2017年   85篇
  2016年   116篇
  2015年   94篇
  2014年   123篇
  2013年   188篇
  2012年   208篇
  2011年   209篇
  2010年   140篇
  2009年   162篇
  2008年   190篇
  2007年   174篇
  2006年   139篇
  2005年   122篇
  2004年   85篇
  2003年   91篇
  2002年   84篇
  2001年   58篇
  2000年   47篇
  1999年   39篇
  1998年   27篇
  1997年   23篇
  1996年   37篇
  1995年   46篇
  1994年   52篇
  1993年   58篇
  1992年   64篇
  1991年   39篇
  1990年   37篇
  1989年   38篇
  1988年   34篇
  1987年   28篇
  1986年   34篇
  1985年   43篇
  1984年   36篇
  1983年   30篇
  1982年   28篇
  1981年   20篇
  1980年   23篇
  1979年   27篇
  1978年   20篇
  1976年   27篇
  1974年   25篇
  1973年   39篇
  1972年   19篇
排序方式: 共有3840条查询结果,搜索用时 62 毫秒
151.
To elucidate the structure of a compound is a necessary step for its practical applications. To study the structure and properties of metal sulfide fullerene Sc2S@C88 detected by mass spectrometry, 11 194 isomers of C88 and 33 isomers of Sc2S@C88 were systematically examined by density functional theory calculations. The calculations show that the two lowest‐energy isomers are Sc2S@C88:81 738 (IPR‐35) and Sc2S@C88:81 735 (IPR‐32), followed by Sc2S@C88:81 729 (IPR‐26), Sc2S@C88:81 712 (IPR‐9), and Sc2S@C88:81 733 (IPR‐30). Structural analysis shows that the first two energetically favored isomers are bridged by the third and fifth energetically favored isomers, which can transfer into each other via direct Stone–Wales rotation. The calculations of temperature effect show that the first two favored isomers become dominant forms of Sc2S@C88 with decreasing temperature and may coexist in the soot. This structural convertibility among favored isomers of Sc2S@C88 suggest a hidden rule that birds of a feather flock together in metal sulfide fullerenes. This rule may decrease the range of candidate cages for the structural identification of a metal sulfide fullerene. IR spectra are simulated for helping the future experimental identification of Sc2S@C88.  相似文献   
152.
R. Sarma 《Physics letters. A》2010,374(30):3076-3079
Within a simplified model, we explore how bound electron-hole pair (exciton) states and optical transitions between them are affected by the geometry of a helically shaped one-dimensional semiconductor. Among the illustrated geometrical effects are variable enhancement of the binding energy for different excitons and the appearance of new excitonic states with spatially separated electron and hole positioned on different turns of the helix.  相似文献   
153.
154.
With the growing understanding of the role of radon and its daughter products as major sources of radiation exposure, the importance of large number of estimation of radon concentration in various parts of the country is realized. Inhalation of radon, thoron and their decay products is the major source of the total radioactive dose received by the human population from natural radiation. The indoor radon and thoron progeny levels in Nalbari area of Assam are studied by using the LR-115 (type II) Solid State Nuclear Track Detector in Plastic Twin Chamber dosimeter. Radon and thoron progeny levels in different types of dwellings for one full calendar year are presented in this paper. For Assam Type (A.T.) houses, indoor radon progeny concentrations vary from 0.17 to 0.64 mWL with an annual geometric mean of 0.27 mWL and that for Reinforced Cement Concrete (R.C.C.) houses vary from 0.22 mWL to 0.60 mWL with the annual geometric mean of 0.37 mWL. The thoron progeny levels in A.T. houses also vary from 0.01 to of 0.05 mWL with an annual geometric mean of 0.02 mWL and that for R.C.C. houses vary from 0.02 to 0.08 mWL with the annual geometric mean of 0.04 mWL.   相似文献   
155.
156.
In this paper, 1,2-bis(2-acetamido-6-pyridyl)ethane, receptor 1, having an ethylene spacer is reported to recognise dicarboxylic acids. The binding study in the solution phase is carried out using 1H NMR (1:1) and UV–vis experiments and in the solid phase by single-crystal X-ray analysis. In 1H NMR, the downfield shifts of specific amide protons of receptor 1 in 1:1 complexes of receptor and guest diacids, and in the UV–vis experiment, the appearance of an isosbestic point as well as significant binding constants are observed, which thus unambiguously support the complexation of receptor 1 with dicarboxylic acids in solution. Receptor 2, simple 2-acetamido-6-methylpyridine, has lower binding constants than receptor 1 due to cooperative binding of two pyridine amide groups with two acid groups of diacids. In the solid phase, the ditopic receptor 1 shows a grid-like polymeric hydrogen-bonded network that changes to a polymeric wave-like 1:1 anti-perpendicular network instead of the synsyn polymeric 1:1 (Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett. 2005 (a) Goswami, S., Ghosh, K. and Dasgupta, S. 2000. J. Org. Chem., 65: 19071914. (b) Goswami, S.; Ghosh, K.; Mukherjee, R. Tetrahedron2001, 57, 4987–4993. (c) Goswami, S.; Ghosh, K.; Halder, M. Tetrahedron Lett.1999, 40, 1735–1738. (d) Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett.2005, 46, 7187–7191. (e) Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem.2006, 18, 571–574. (f) Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm.2008, 10, 507–517. (g) Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron2008,64, 6426–6433. (h) Goswami, S.; Dey, S.; Jana, S. Tetrahedron2008, 64, 6358–6363 [Google Scholar], 46, 7187–7191), antianti polymeric 1:1 (Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem. 2006 (a) Goswami, S., Ghosh, K. and Dasgupta, S. 2000. J. Org. Chem., 65: 19071914. (b) Goswami, S.; Ghosh, K.; Mukherjee, R. Tetrahedron2001, 57, 4987–4993. (c) Goswami, S.; Ghosh, K.; Halder, M. Tetrahedron Lett.1999, 40, 1735–1738. (d) Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett.2005, 46, 7187–7191. (e) Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem.2006, 18, 571–574. (f) Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm.2008, 10, 507–517. (g) Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron2008,64, 6426–6433. (h) Goswami, S.; Dey, S.; Jana, S. Tetrahedron2008, 64, 6358–6363 [Google Scholar], 18, 571–574; Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm. 2008, 10, 507–517; Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron 2008, 64, 6426–6433), synsyn 2:2 (Karle, I.L.; Ranganathan, D.; Haridas, V. J. Am. Chem. Soc. 1997 (a) Garcia-Tellado, F., Goswami, S., Chang, S.K., Geib, S.J. and Hamilton, A.D. 1990. J. Am. Chem. Soc., 112: 73937394. (b) Geib, S.J.; Vicent, C.; Fan, E.; Hamilton, A.D. Angew. Chem. Int. Ed. Engl.1993, 32, 119–121. (c) Garcia-Tellado, F.; Geib, S.J.; Goswami, S.; Hamilton, A.D. J. Am. Chem. Soc.1991, 113, 9265–9269. (d) Karle, I.L.; Ranganathan, D.; Haridas, V. J. Am. Chem. Soc.1997, 119, 2777–2783. (e) Moore, G.; Papamicaël, C.; Levacher, V.; Bourguignon, J.; Dupas, G. Tetrahedron2004, 60, 4197–4204. (f) Korendovych, I.V.; Cho, M.; Makhlynets, O.V.; Butler, P.L.; Staples, R.J.; Rybak-Akimova, E.V. J. Org. Chem.2008, 73, 4771–4782. (g) Ghosh, K.; Masanta, G.; Fröhlich, R.; Petsalakis, I.D.; Theodorakopoulos, G. J. Phys. Chem. B2009, 113, 7800–7809 [Google Scholar], 119, 2777–2783) or topbottom-bound 1:1 (Garcia-Tellado, F.; Goswami, S.; Chang, S.K.; Geib, S.J.; Hamilton, A.D. J. Am. Chem. Soc. 1990 (a) Goswami, S., Ghosh, K. and Dasgupta, S. 2000. J. Org. Chem., 65: 19071914. (b) Goswami, S.; Ghosh, K.; Mukherjee, R. Tetrahedron2001, 57, 4987–4993. (c) Goswami, S.; Ghosh, K.; Halder, M. Tetrahedron Lett.1999, 40, 1735–1738. (d) Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett.2005, 46, 7187–7191. (e) Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem.2006, 18, 571–574. (f) Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm.2008, 10, 507–517. (g) Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron2008,64, 6426–6433. (h) Goswami, S.; Dey, S.; Jana, S. Tetrahedron2008, 64, 6358–6363 [Google Scholar], 112, 7393–7394) co-crystals.

  相似文献   
157.
One-electron oxidation of bis(4-tert-butylphenyl)aminoxyl with antimony pentachloride and bromine leads to the formation of oxoammonium salts with anions SbCl 6 ? and Br 3 ? respectively. The salt with the Br 3 ? anion converted at heating into a mixture of bromodiphenylamines which formed also from the aminoxyl as a result of previously unknown reaction of three-electron reductive bromination. The mechanisms of these reactions were assumed.  相似文献   
158.
The association reaction between silyl radical (SiH3) and H2O2 has been studied in detail using high-level composite ab initio CBS-QB3 and G4MP2 methods. The global hybrid meta-GGA M06 and M06-2X density functionals in conjunction with 6-311++G(d,p) basis set have also been applied. To understand the kinetics, variational transition-state theory calculation is performed on the first association step, and successive unimolecular reactions are subjected to Rice–Ramsperger–Kassel–Marcus calculations to predict the reaction rate constants and product branching ratios. The bimolecular rate constant for SiH3–H2O2 association in the temperature range 250–600 K, k(T) = 6.89 × 10?13 T ?0.163exp(?0.22/RT) cm3 molecule?1 s?1 agrees well with the current literature. The OH production channel, which was experimentally found to be a minor one, is confirmed by the rate constants and branching ratios. Also, the correlation between our theoretical work and experimental literature is established. The production of SiO via secondary reactions is calculated to be one of the major reaction channels from highly stabilized adducts. The H-loss pathway, i.e., SiH2(OH)2 + H, is the major decomposition channel followed by secondary dissociation leading to SiO.  相似文献   
159.
Advances in chemical syntheses have led to the formation of various kinds of nanoparticles (NPs) with more rational control of size, shape, composition, structure and catalysis. This review highlights recent efforts in the development of Pt and non‐Pt based NPs into advanced nanocatalysts for efficient oxygen reduction reaction (ORR) under fuel‐cell reaction conditions. It first outlines the shape controlled synthesis of Pt NPs and their shape‐dependent ORR. Then it summarizes the studies of alloy and core–shell NPs with controlled electronic (alloying) and strain (geometric) effects for tuning ORR catalysis. It further provides a brief overview of ORR catalytic enhancement with Pt‐based NPs supported on graphene and coated with an ionic liquid. The review finally introduces some non‐Pt NPs as a new generation of catalysts for ORR. The reported new syntheses with NP parameter‐tuning capability should pave the way for future development of highly efficient catalysts for applications in fuel cells, metal‐air batteries, and even in other important chemical reactions.  相似文献   
160.
An elegant reagent‐controlled strategy has been developed for the generation of a diverse range of biologically active scaffolds from a chiral bicyclic lactam. Reduction of the chiral lactam with LAH or alkylation with LHMDS to trigger different cyclization reactions have been shown to generate privileged scaffolds, such as pyrrolidines, indolines, and cyclotryptamines. Their amenability to substitution allows us to create various compound libraries by using these scaffolds. In silico studies were used to estimate the drug‐like properties of these compounds. Selected compounds were subjected to anticancer screening by using three different cell lines. In addition, all these compounds were subjected to antibacterial screening to gauge the spectrum of biological activity that was conferred by our DOS methodology. Gratifyingly, with no additional iterative cycles, our method directly generated anticancer compounds with potency at low nanomolar concentrations, as represented by spiroindoline 14 .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号