An analytical method for simultaneous in situ ethylation, of organolead, organotin and organomercury compounds in aqueous samples was developed using a new derivatisation agent, bromomagnesium tetraethylborate (BrMgEt4B). The determination of lead, tin and mercury compounds was done by species‐specific isotope dilution, derivatisation and GC–inductively coupled plasma MS (GC‐ICP‐MS) or by GC‐MS. The recovery and accuracy of the derivatisation were evaluated. The effect of pH and the relative quantity of derivatisation agent were studied. 相似文献
Dipolar aggregation : Examples of a novel class of tweezer molecules have been constructed through the tethering of two dipolar merocyanine chromophores. The electrostatic‐interaction‐directed self‐assembly of these tweezers affords centrosymmetric bimolecular complexes with a unique aggregate geometry of four π‐stacked chromophores (see picture) with an alternating arrangement of their dipole moments and very high dimerization constants, even in the good solvating solvent chloroform.
The new dinuclear nickel–ruthenium complexes [Ni(xbsms)RuCp(L)][PF6] (H2xbsms=1,2‐bis(4‐mercapto‐3,3‐dimethyl‐2‐thiabutyl)benzene; Cp?=cyclopentadienyl; L=DMSO, CO, PPh3, and PCy3) are reported and are bioinspired mimics of NiFe hydrogenases. These compounds were characterized by X‐ray diffraction techniques and display novel structural motifs. Interestingly, [Ni(xbsms)RuCpCO][PF6] is stereochemically nonrigid in solution and an isomerization mechanism was derived with the help of density functional theory (DFT) calculations. Because of an increased electron density on the metal centers [Eur. J. Inorg. Chem. 2007 , 18 , 2613–2626] with respect to the previously described [Ni(xbsms)Ru(CO)2Cl2] and [Ni(xbsms)Ru(p‐cymene)Cl]+ complexes, [Ni(xbsms)RuCp(dmso)][PF6] catalyzes hydrogen evolution from Et3NH+ in DMF with an overpotential reduced by 180 mV and thus represents the most efficient NiFe hydrogenase functional mimic. DFT calculations were carried out with several methods to investigate the catalytic cycle and, coupled with electrochemical measurements, allowed a mechanism to be proposed. A terminal or bridging hydride derivative was identified as the active intermediate, with the structure of the bridging form similar to that of the Ni? C active state of NiFe hydrogenases. 相似文献
Three new isostructural MOF-type compounds (named MIL-122) have been obtained from the hydrothermal reaction at 210 °C for 24 h of the 1,4,5,8-naphthalenetetracarboxylic acid with aluminum, gallium or indium source in water. The structures of the compounds M2(OH)2[C14H4O8] (M = Al, Ga, In) have been solved ab initio from powder X-ray diffraction analysis using the synchrotron radiation (Soleil; station CRISTAL). The three-dimensional organic–inorganic framework exhibits infinite straight chains of metal-centered octahedra sharing trans corners linked to each other through the 1,4,5,8-naphthalenetetracarboxylate ligand. The cations Al, Ga or In, are coordinated by four oxygen atoms coming from the carboxyl groups and two bridging hydroxyl groups μ2-OH, located in trans position in the octahedral surrounding. The compounds characterized by thermogravimetric and thermodiffraction analyses are thermally stable up to 440, 460 and 380 °C, for Al, Ga and In, respectively. Crystal data: monoclinic cell; P21/c (n°14); for MIL-122 (Al): a = 9.5174(2), b = 10.0706(1), c = 6.6465(2) Å, β = 91.2614(5)°, V = 636.878(2) Å3, Z = 2; for MIL-122 (Ga): a = 9.6501(1), b = 10.0585(1), c = 6.75069(9) Å, β = 92.4786(9)°, V = 654.65(1) Å3, Z = 2; for MIL-122 (In): a = 9.92359(5), b = 10.19765(7), c = 7.19357(4) Å, β = 727.034(8)°, V = 727.034(8)Å3, Z = 2. 相似文献
pH is an important parameter that affects many functions of live cells, from protein structure or function to several crucial steps of their metabolism. Genetically encoded pH sensors based on pH-sensitive fluorescent proteins have been developed and used to monitor the pH of intracellular compartments. The quantitative analysis of pH variations can be performed either by ratiometric or fluorescence lifetime detection. However, most available genetically encoded pH sensors are based on green and yellow fluorescent proteins and are not compatible with multicolor approaches. Taking advantage of the strong pH sensitivity of enhanced cyan fluorescent protein (ECFP), we demonstrate here its suitability as a sensitive pH sensor using fluorescence lifetime imaging. The intracellular ECFP lifetime undergoes large changes (32 %) in the pH 5 to pH 7 range, which allows accurate pH measurements to better than 0.2 pH units. By fusion of ECFP with the granular chromogranin A, we successfully measured the pH in secretory granules of PC12 cells, and we performed a kinetic analysis of intragranular pH variations in living cells exposed to ammonium chloride. 相似文献
The compound [RU3(μ3,η2- -ampy)(μ3η1:η2-PhC=CHPh)(CO)6(PPh3)2] (1) (ampy = 2-amino-6-methylpyridinate) has been prepared by reaction of [RU3(η-H)(μ3,η2- ampy) (μ,η1:η2-PhC=CHPh)(CO)7(PPh3)] with triphenylphosphine at room temperature. However, the reaction of [RU3(μ-H)(μ3, η2 -ampy)(CO)7(PPh3)2] with diphenylacetylene requires a higher temperature (110°C) and does not give complex 1 but the phenyl derivative [RU3(μ3,η2-ampy)(μ,η 1:η2 -PhC=CHPh)(μ,-PPh2)(Ph)(CO)5(PPh3)] (2). The thermolysis of complex 1 (110°C) also gives complex 2 quantitatively. Both 1 and 2 have been characterized by0 X-ray diffraction methods. Complex 1 is a catalyst precursor for the homogeneous hydrogenation of diphenylacetylene to a mixture of cis- and trans -stilbene under mild conditions (80°C, 1 atm. of H2), although progressive deactivation of the catalytic species is observed. The dihydride [RU3(μ-H)2(μ 3,η2-ampy)(μ,η1:η2- PhC=CHPh)(CO)5(PPh3)2] (3), which has been characterized spectroscopically, is an intermediate in the catalytic hydrogenation reaction. 相似文献
This work aimed to set new guidelines for the quantification of Cr accumulation in solid oxide fuel cell cathodes after operation, and enabled to pinpoint a diffusion-controlled tolerance to Cr-poisoning for increased cathode thickness; the additional cathode material decreases the deposition rate from Cr vapor species in the active layer.These experimentally based findings were obtained by direct comparison of cathode performances measured on a segmented test arrangement enabling the independent control of four cathodes, with different thicknesses, on an anode-support. The cathode thickness-dependent performance degradation was correlated to deliberate poisoning by volatile Cr species stemming from the test arrangement. 相似文献