Cyanide is a poisonous and dangerous chemical that binds to metals in metalloenzymes, especially cytochrome C oxidase and, thus, interferes with their functionalities. Different pathways and enzymes are involved during cyanide biodegradation, and cyanide hydratase is one of the enzymes that is involved in such a process. In this study, cyanide resistance and cyanide degradation were studied using 24 fungal strains in order to find the strain with the best capacity for cyanide bioremediation. To confirm the capacity of the tested strains, cyano-bioremediation and the presence of the gene that is responsible for the cyanide detoxification was assessed. From the tested organisms, Trichoderma harzianum (T. harzianum) had a significant capability to resist and degrade cyanide at a 15 mM concentration, where it achieved an efficiency of 75% in 7 days. The gene network analysis of enzymes that are involved in cyanide degradation revealed the involvement of cyanide hydratase, dipeptidase, carbon–nitrogen hydrolase-like protein, and ATP adenylyltransferase. This study revealed that T. harzianum was more efficient in degrading cyanide than the other tested fungal organisms, and molecular analysis confirmed the experimental observations. 相似文献
The inhibition-release titration method has been used to study interference effects in flame atomic-absorption determination of iron. Interferences from anions, cations and complexing agents with the atomic-absorption of iron when a stoichiometric air-acetylene flame is used, can be obviated by a preliminary treatment of the sample solution with sulphosalicylic acid to convert the iron into the same complex before aspiration, thus giving a constant environment for the iron in the flame processes. 相似文献
Journal of Solid State Electrochemistry - A facile and sensitive approach is introduced to precisely determine trace amounts of prostate specific antigen (PSA) by gold nanostructures deposited on... 相似文献
The template condensation of acetoacetic-2-pyridylamide with amino aliphatic alcohols such as 2-aminoethanol (HL1) and 3-amino propanol (HL2) in the presence of copper(II) ions gave octahedral complexes, which have been characterized by elemental analyses, u.v.-vis. and i.r. spectra, conductivity, d.t.a, magnetic and e.s.r. measurements. The molar conductance in DMF indicate that the complexes are non-ionic in character. The e.s.r. spectra of solid complexes (2) and (5) at room temperature indicate axial type symmetry (dx2-y2) with covalent bond character. 相似文献
Here, polymelamine formaldehyde was decorated on the surface of reduced graphene oxide whose surface was then electrodeposited with a sub-monolayer of platinum nanoparticles. The nanocomposite thus prepared was characterized using several spectroscopic methods. Using the nanocomposite as a potential electrocatalyst for carbon dioxide reduction, the products were detected by Raman spectroscopy, gas chromatography, 13C-NMR spectroscopy, and gas chromatography-mass spectrometry. The analytical results identified methanol as the main product of CO2 reduction. Moreover, analysis of the liquid products confirmed methanol as the predominant product with a current density of 0.4 mA/cm and a Faradaic efficiency of 93 %. 相似文献
In this study, anticancer, antibacterial (against hospital-isolated antibiotic-resistant Escherichia coli strains), antifungal, and antioxidant effects of synthesized heterocyclic compounds 5 and 7 containing thiazole core were examined. Cytotoxicity testing was utilized against MCF-7 breast cancer cells via MTT cell viability assay. Antibacterial and antifungal activities were checked out according to Clinical and Laboratory Standards Institute (CLSI) guidelines, and antioxidant properties were evaluated through scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals. Results showed the viability of breast cancer cell lines was reliant on concentration of heterocycles and time of incubation. Synthetic compounds exhibited excellent antibacterial and antifungal properties base on their minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum fungicidal concentration (MFC) values as well as high antioxidant activities according to their IC50 values. Higher anticancer and antibacterial properties were observed with compound 7; on the contrary, thiazole 5 had better antioxidant effects. They can be introduced as potent antimicrobial, antioxidant, and anticancer agents. 相似文献
This study has concerned the development of polymer composite electrolytes based on poly(vinyl butyral) (PVB) reinforced with calcinated Li/titania (CLT) for use as an electrolyte in electrochemical devices. The primary aim of this work was to verify our concept of applying CLT-based fillers in a form of nano-backbone to enhance the performance of a solid electrolyte system. To introduce the network of CLT into the PVB matrix, gelatin was used as a sacrificial polymer matrix for the implementation of in situ sol–gel reactions. The gelatin/Li/titania nanofiber films with various lithium perchlorate (LiClO4) and titanium isopropoxide proportions were initially fabricated via electrospinning, and ionic conductivities of electrospun nanofibers were then examined at 25 °C. In this regard, the highest ionic conductivity of 2.55 × 10−6 S/cm was achieved when 10 wt% and 7.5 wt% loadings of LiClO4 and titania precursor were used, respectively. The nanofiber film was then calcined at 400 °C to remove gelatin, and the obtained CLT film was then re-dispersed in solvated PVB-lithium bis(trifluoromethanesulfonyl)imide (PVB-LiTFSI) solution before casting to obtain reinforced composite solid electrolyte film. The reinforced composite PVB polymer electrolyte film shows high ionic conductivity of 2.22 × 10−4 S/cm with a wider electrochemical stability window in comparison to the one without nanofillers.
Garlic (Allium sativum) is the second most important Allium crop that has been used as a vegetable and condiment from ancient times due to its characteristic flavor and taste. Although garlic is a sterile plant that reproduces vegetatively through cloves, garlic shows high biodiversity, as well as phenotypic plasticity and environmental adaptation capacity. To determine the possible mechanism underlying this phenomenon and to provide new genetic materials for the development of a novel garlic cultivar with useful agronomic traits, the metabolic profiles in the leaf tissue of 30 garlic accessions collected from different geographical regions, with a special focus on the Asian region, were investigated using LC/MS. In addition, the total saponin and fructan contents in the roots and cloves of the investigated garlic accessions were also evaluated. Total saponin and fructan contents did not separate the garlic accessions based on their geographical origin, implying that saponin and fructan contents were clone-specific and agroclimatic changes have affected the quantitative and qualitative levels of saponins in garlic over a long history of cultivation. Principal component analysis (PCA) and dendrogram clustering of the LC/MS-based metabolite profiling showed two major clusters. Specifically, many Japanese and Central Asia accessions were grouped in cluster I and showed high accumulations of flavonol glucosides, alliin, and methiin. On the other hand, garlic accessions grouped in cluster II exhibited a high accumulation of anthocyanin glucosides and amino acids. Although most of the accessions were not separated based on country of origin, the Central Asia accessions were clustered in one group, implying that these accessions exhibited distinct metabolic profiles. The present study provides useful information that can be used for germplasm selection and the development of new garlic varieties with beneficial biotic and abiotic stress-adaptive traits. 相似文献
The first asymmetric catalytic approach to multilayer 3D chirality has been achieved by using Suzuki-Miyaura cross-couplings. New chiral catalysts were designed and screened under various catalytic systems that proved chiral amide-phosphines to be more efficient ligands than other candidates. The multilayer 3D framework was unambiguously determined by X-ray structural analysis showing a parallel pattern of three layers consisting of top, middle and bottom aromatic rings. The X-ray structure of a catalyst complex, dichloride complex of Pd-phosphine amide, was obtained revealing an interesting asymmetric environment nearby the Pd metal center. Three rings of multilayer 3D products can be readily changed by varying aromatic ring-anchored starting materials. The resulting multilayer products displayed strong luminescence under UV irradiation and strong aggregation-induced emission (AIE). In the future, this work would benefit not only the field of asymmetric synthesis but also materials science, in particular polarized organic electronics, optoelectronics and photovoltaics. 相似文献
Structural Chemistry - In this work, the hydrogenation of acetylene on the Pd2/g-C3N4 catalyst is investigated by the density functional theory (DFT) and quantum theory of atoms in molecules... 相似文献