首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   8篇
化学   160篇
晶体学   1篇
力学   1篇
数学   15篇
物理学   28篇
  2023年   1篇
  2022年   2篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   9篇
  2013年   10篇
  2012年   11篇
  2011年   16篇
  2010年   3篇
  2009年   3篇
  2008年   19篇
  2007年   18篇
  2006年   24篇
  2005年   16篇
  2004年   6篇
  2003年   8篇
  2002年   5篇
  2001年   4篇
  2000年   5篇
  1999年   7篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
排序方式: 共有205条查询结果,搜索用时 15 毫秒
71.
The reactions of the SnII base Sn(NMe2)2 with CyPHM (Cy=cyclohexyl) produce a range of products, depending primarily on the alkali metal (M) involved. The 1:3 stoichiometric reaction of Sn(NMe2)2 with CyPHNa in the presence of the Lewis base donor PMDETA (PMDETA=(Me2NCH2CH2)2NMe) gives [(NaPMDETA)2{Sn(mu-PCy)}3] (3), containing the electron-deficient [{Sn(mu-PCy)}3]2- dianion. Natural bond order (NBO) and electron localisation function (ELF) calculations show that this species is described most appropriately by a two-electron, three-centre Sn3 bonding model. Evidence that 3 results from phosphide coupling is provided by the 1:1 reaction of Sn(NMe2)2 with CyPHNa in the presence of PMDETA, which gives 3 and trace amounts of (NaPMDETA)2[{Sn(mu-PCy)}2(mu-PCyPCy)] (4) (containing one PCyPCy2- dianion). Greater extents of phosphide coupling are observed as the size of the Group 1 metal is increased. Thus, the 1:3 reaction of Sn(NMe2)2 with CyPHK in THF gives the co-crystalline product {(K2 THF)2[{Sn(mu-PCyPCy)}2(mu-PCy)]}0.9{(K2 THF)2[{Sn(mu-PCy)}2(mu-PCyPCy)]}0.1 (5) (containing [{Sn(mu-PCyPCy)}2(mu-PCy)]2- and [{Sn(mu-PCy)}2(mu-PCyPCy)]2- dianions), whereas the analogous reaction of Sn(NMe2)2 with RbPHCy gives [RbPMDETA{(CyP)3SnP(H)Cy}] (6) (containing a cyclic {(CyP)3Sn} unit).  相似文献   
72.
The analysis of previously reported shortcomings of the condensed Fukui functions obtained making use of the quantum theory of atoms in molecules indicates these drawbacks are due to the inadequacy of the definition employed to compute them and not to the partitioning. A new procedure, which respects the mathematical definition and solves these problems, is presented for the calculation of condensed Fukui functions for atomic basins defined according to the quantum theory of atoms in molecules. It is tested in a set of 18 molecules, which includes the most controversial reported cases.  相似文献   
73.
The conformational preferences of six model compounds for the N-C-N anomeric unit (methanediamine, 2,2-propanediamine, N,N,N',N'-tetramethyl-methanediamine, 1,3-dizacyclohexane, 1,3,5-triazacyclohexane, and 2-aminopiperidine) were analyzed within the framework of the Quantum Theory of Atoms in Molecules. The relative stabilization of the conformers is related to two factors: (i) the reduction of the electron population experienced by the hydrogens of the central methylene when they display more gauche arrangements to lone pairs (lp) and (ii) the reduction of the electron population of aminic hydrogens when the corresponding N-H bond is in a parallel arrangement to the lone pair of another N. The former depletion takes place in lp-N-C-N antiperiplanar dispositions, whereas the latter is shown in lp-N-C-N gauche arrangements. Therefore, we can say that the electron density removed from the central hydrogens is moved to an aminic one on going from an antiperiplanar to a gauche disposition of a lp-N-C-N unit. The relative energies of aminic and central hydrogens in the conformer series is the main factor determining the conformational preference. In contrast to what happens in O-C-O containing compounds (where both N(H) depletions take place in the O-C-O-H gauche dispositions), the stabilization gained by N and C atoms plays a secondary role. This is in line with a general trend exhibited by hydrogens as the most available (less energy cost) atomic basins for receiving or providing electron density along a chemical change. It also explains why the anomeric conformational stabilization due to the N-C-N units is significantly less than that of the O-C-O- units. Moreover, the variations of electron population due to conformational changes are not in keeping with the stereoelectronic model of the anomeric effect, as was previously found for diverse molecules containing the O-C-O anomeric unit.  相似文献   
74.
The micellar properties and solubilization capacity of poorly water soluble drugs of several micellar and gel solutions of diblock and triblock copolymers of styrene oxide/ethylene oxide have been measured and compared with block copolymers of butylene oxide/ethylene oxide, showing that the solubilization capacity of the styrene oxide block is approximately four times that of a butylenes oxide block for dilute solutions. To continue establishing the correlation between micellar characteristics and solubilization capacity, we have found it interesting to compare the micellar and gelation properties of the diblock and triblock copolymers PSO10PEO135 and PEO69PSO8PEO69 (subindexes are the number-average block lengths), with different architecture but similar average block lengths. Surface tension measurements allowed the determination of the critical micelle concentrations at several temperatures and, so, to calculate standard enthalpies of micellization. Static and dynamic light scattering data permitted us to determine micellar parameters and to obtain qualitatively the extent of hydration of the copolymer micelle. A tube inversion method was used to define the mobile-immobile (soft-hard gel) phase boundary. To refine the phase diagram and observe the existence of additional phases, rheological measurements were done. The results are in good agreement with previous values published for PSOnPEOm and PEOmPSOnPEOm copolymers.  相似文献   
75.
In this work we present, to our knowledge for the first time, the results of a transient infrared spectroscopic study of the photoinduced valence tautomerism process in cobalt-dioxolene complexes with sub-picosecond time resolution. The molecular systems investigated were [Co(tpa)(diox)]PF(6) (1) and [Co(Me(3)tpa)(diox)]PF(6) (2), where diox = 3,5-di-tert-butyl-1,2-dioxolene; tpa = tris(2-pyridylmethyl)amine and Me(3)tpa its 6-methylated analogue. Complex (1) is present in solution as ls-Co(III)(catecholate) (1-CAT), while (2) as hs-Co(II)(semiquinonate) (2-SQ). DFT calculation of the harmonic frequencies for (1) and (2) allowed us to identify the vibrational markers of catecholate and semiquinonate redox isomers. Irradiation with 405 and 810 nm pulses (~35 fs) of (1-CAT) induces the formation of an intermediate excited species from which the ground state population is recovered with a time constant of 1.5 ± 0.3 ns. Comparing the 1 ns transient infrared spectrum with the experimental difference spectrum FTIR(2-SQ)-FTIR(1-CAT) and with the calculated difference spectrum IR(c)(1-SQ)-IR(c)(1-CAT) we are able to unequivocally identify the long lived species as the semiquinonate redox isomer of (1). On the other hand, no evidence of photoconversion is observed upon irradiation of (2) with 405 nm. Temporal evolution of transient spectra was analyzed with the combined approach consisting of singular values decomposition and global fitting (global analysis). After 405 and 810 nm excitation of (1-CAT), the semiquinonate excited species is formed on an ultrafast time scale (<200 fs) and cools down within the first 50 ps. Excitation of (2-SQ) with 405 nm wavelength produces a short lived excited state in which the semiquinonate nature of dioxolene is preserved and the ground state recovery is completed within 30 ps.  相似文献   
76.
77.
The Lewis base behavior of μ3‐nitrido ligands of the polynuclear titanium complexes [{Ti(η5‐C5Me5)(μ‐NH)}33‐N)] ( 1 ) and [{Ti(η5‐C5Me5)}43‐N)4] ( 2 ) to MX Lewis acids has been observed for the first time. Complex 1 entraps one equivalent of copper(I ) halide or copper(I ) trifluoromethanesulfonate through the basal NH imido groups to give cube‐type adducts [XCu{(μ3‐NH)3Ti35‐C5Me5)33‐N)}] (X=Cl ( 3 ), Br ( 4 ), I ( 5 ), OSO2CF3 ( 6 )). However, the treatment of 1 with an excess (≥2 equiv) of copper reagents afforded complexes [XCu{(μ3‐NH)3Ti35‐C5Me5)34‐N)(CuX)}] (X=Cl ( 7 ), Br ( 8 ), I ( 9 ), OSO2CF3 ( 10 )) by incorporation of an additional CuX fragment at the μ3‐N nitrido apical group. Similarly, the tetranuclear cube‐type nitrido derivative 2 is capable of incorporating one, two, or up to three CuX units at the μ3‐N ligands to give complexes [{Ti(η5‐C5Me5)}43‐N)4?n{(μ4‐N)CuX}n] (X=Br ( 11 ), n=1; X=Cl ( 12 ), n=2; X=OSO2CF3 ( 13 ), n=3). Compound 2 also reacts with silver(I ) trifluoromethanesulfonate (≥1 equiv) to give the adduct [{Ti(η5‐C5Me5)}43‐N)3{(μ4‐N)AgOSO2CF3}] ( 14 ). X‐ray crystal structure determinations have been performed for complexes 8 – 13 . Density functional theory calculations have been carried out to understand the nature and strength of the interactions of [{Ti(η5‐C5H5)(μ‐NH)}33‐N)] ( 1′ ) and [{Ti(η5‐C5H5)}43‐N)4] ( 2′ ) model complexes with copper and silver MX fragments. Although coordination through the three basal NH imido groups is thermodynamically preferred in the case of 1′ , in both complexes the μ3‐nitrido groups act as two‐electron donor Lewis bases to the appropriate Lewis acids.  相似文献   
78.
79.
Size-selective hydroformylation of terminal alkenes was attained upon embedding a rhodium bisphosphine complex in a supramolecular metal–organic cage that was formed by subcomponent self-assembly. The catalyst was bound in the cage by a ligand-template approach, in which pyridyl–zinc(II) porphyrin interactions led to high association constants (>105 m −1) for the binding of the ligands and the corresponding rhodium complex. DFT calculations confirm that the second coordination sphere forces the encapsulated active species to adopt the ee coordination geometry (i.e., both phosphine ligands in equatorial positions), in line with in situ high-pressure IR studies of the host–guest complex. The window aperture of the cage decreases slightly upon binding the catalyst. As a result, the diffusion of larger substrates into the cage is slower compared to that of smaller substrates. Consequently, the encapsulated rhodium catalyst displays substrate selectivity, converting smaller substrates faster to the corresponding aldehydes. This selectivity bears a resemblance to an effect observed in nature, where enzymes are able to discriminate between substrates based on shape and size by embedding the active site deep inside the hydrophobic pocket of a bulky protein structure.  相似文献   
80.
Monatshefte für Chemie - Chemical Monthly - Using a differential spectrophotometric technique in water at 25°C measurements were made of the reaction rate in the nitrosation of a number...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号