首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1771篇
  免费   68篇
  国内免费   3篇
化学   1537篇
晶体学   7篇
力学   8篇
数学   101篇
物理学   189篇
  2024年   4篇
  2023年   16篇
  2022年   113篇
  2021年   80篇
  2020年   49篇
  2019年   54篇
  2018年   36篇
  2017年   45篇
  2016年   75篇
  2015年   66篇
  2014年   65篇
  2013年   108篇
  2012年   102篇
  2011年   132篇
  2010年   85篇
  2009年   74篇
  2008年   114篇
  2007年   92篇
  2006年   64篇
  2005年   78篇
  2004年   59篇
  2003年   42篇
  2002年   33篇
  2001年   15篇
  2000年   18篇
  1999年   7篇
  1998年   11篇
  1997年   14篇
  1996年   14篇
  1995年   13篇
  1994年   11篇
  1993年   11篇
  1992年   7篇
  1991年   6篇
  1990年   8篇
  1989年   9篇
  1988年   11篇
  1987年   6篇
  1986年   4篇
  1985年   5篇
  1981年   6篇
  1980年   7篇
  1979年   9篇
  1978年   5篇
  1977年   7篇
  1976年   5篇
  1973年   7篇
  1971年   3篇
  1969年   6篇
  1967年   3篇
排序方式: 共有1842条查询结果,搜索用时 0 毫秒
41.
NH3 temperature-programmed desorption (NH3-TPD) is frequently used for probing the nature of the active sites in CuSSZ-13 zeolite for selective catalytic reduction (SCR) of NOx. Herein, we propose an interpretation of NH3-TPD results, which takes into account the temperature-induced dynamics of NH3 interaction with the active centers. It is based on a comprehensive DFT/GGA+D and first-principles thermodynamic (FPT) modeling of NH3 adsorption on single Cu2+, Cu+, [CuOH]+ centers, dimeric [Cu-O-Cu]2+, [Cu-O22−-Cu]2 species, segregated CuO nanocrystals and Brønsted acid sites (BAS). Theoretical TPD profiles are compared with the experimental data measured for samples of various Si/Al ratios and distribution of Al within the zeolite framework. Copper reduction, its relocation, followed by the intrazeolite olation/oxolation processes, which are concomitant with NH3 desorption, were revealed by electron paramagnetic resonance (EPR) and IR. DFT/FPT results show that the peaks in the desorption profiles cannot be assigned univocally to the particular Cu and BAS centers, since the observed low-, medium- and high-temperature desorption bands have contributions coming from several species, which dynamically change their speciation and redox states during NH3-TPD experiment. Thus, a rigorous interpretation of the NH3-TPD profiles of CuSSZ-13 in terms of the strength and concentration of the active centers of a particular type is problematic. Nonetheless, useful connections for molecular interpretation of TPD profiles can be established between the individual component peaks and the corresponding ensembles of the adsorption centers.  相似文献   
42.
In this study, the general processability of cannabidiol (CBD) in colloidal lipid carriers was investigated. Due to its many pharmacological effects, the pharmaceutical use of this poorly water-soluble drug is currently under intensive research and colloidal lipid emulsions are a well-established formulation option for such lipophilic substances. To obtain a better understanding of the formulability of CBD in lipid emulsions, different aspects of CBD loading and its interaction with the emulsion droplets were investigated. Very high drug loads (>40% related to lipid content) could be achieved in emulsions of medium chain triglycerides, rapeseed oil, soybean oil and trimyristin. The maximum CBD load depended on the type of lipid matrix. CBD loading increased the particle size and the density of the lipid matrix. The loading capacity of a trimyristin emulsion for CBD was superior to that of a suspension of solid lipid nanoparticles based on trimyristin (69% vs. 30% related to the lipid matrix). In addition to its localization within the lipid core of the emulsion droplets, cannabidiol was associated with the droplet interface to a remarkable extent. According to a stress test, CBD destabilized the emulsions, with phospholipid-stabilized emulsions being more stable than poloxamer-stabilized ones. Furthermore, it was possible to produce emulsions with pure CBD as the dispersed phase, since CBD demonstrated such a pronounced supercooling tendency that it did not recrystallize, even if cooled to −60 °C.  相似文献   
43.
Marine feed ingredients derived from cephalopods (e.g., squid) and crustaceans (e.g., krill) are commercially used to improve the palatability of shrimp diets. Increase in global demand for shrimps has resulted in overfishing of these marine organisms and is a matter of concern. Insect protein hydrolysate could be a sustainable alternative for the possible replacement of these marine feed ingredients. During this study, four formulations: diet A (control: not containing any palatability enhancer), diet B (containing squid meal and krill oil), diet C (containing 1% insect protein hydrolysate), and diet D (containing 2% insect protein hydrolysate) were tested for (1) time required by first subject to begin feeding (time to strike) and (2) palatability in Litopenaeus vannamei. Additionally, the chemical composition of all four diet formulations was also analyzed. Results indicate that all diets had similar crude composition. The major essential amino acids in all diets were leucine and lysine, whereas eicosapentaenoic acid was the major omega-3 fatty acid in all diets. There were no significant differences between the mean time to strike for all the tested formulations. Palatability of tested formulations was found in the following order: diet D > diet C > diet B = diet A (p < 0.05), indicating that addition of squid meal and krill oil has no effect on palatability in comparison to control, whereas inclusion of insect protein hydrolysates significantly improves the palatability of formulations. Palatability enhancement potential of insect protein hydrolysate could be attributed to the high free amino acid content and water solubility in comparison to squid meal.  相似文献   
44.

A simple and sensitive thin-layer chromatography (TLC) method coupled with an image analysis technique was developed for the simultaneous quantitative determination of L-proline and L-lysine in dietary supplement with good precision and accuracy. Separation was performed on silica gel plates using ethanol‒toluene (2:3, V/V) as the mobile phase. The visualization of chromatograms was based on iodine–azide reaction; therefore, pre-chromatographic derivatization reaction of amino acids with phenyl isothiocyanate was performed. Digital images of TLC plate chromatograms were converted into peak chromatograms, and quantitative analysis was conducted using TLSee software.

  相似文献   
45.

Improving the germination of economically important crops and the condition of young plants is a major challenge currently facing agricultural practice. Pea (Pisum sativum L.) is one of the four most important cultivated legumes, along with groundnut (Arachis hypogaea L.), soybean (Glycine max L.) and beans (Phaseolus vulgaris L.). Due to the high protein content (23–33%), there is an interest in growing this crop as a source of protein for humans and animals. In this study, we focused on the effect of Cold Atmospheric Pressure Plasma (CAPP) on the decontamination and germination of pea seeds, on young seedling growth and production parameters, and on increasing their resistance and mechanical strength. We can state that germination increased by 10 to 25% after plasma treatment, and the most significant decontamination effect was detected when using non-thermal plasma generated in the ambient air (A-variants) and in the nitrogen atmosphere (N-variants). The increased in situ activity of peroxidases (POX) in the cell walls of A-variants and N-variants is also closely related to the increase in the mechanical strength of the cell walls and thus contributes to the higher resistance of these seedlings. This is also illustrated by the differences in lignin deposition among the different variants after CAPP treatment. To our knowledge, this is the first study concerning the influence of CAPP on the lignification of root tissues and on increasing the strength and resistance of plants.

  相似文献   
46.
Monika  Yadav  Oval  Chauhan  Hemlata  Ansari  Azaj 《Structural chemistry》2021,32(4):1473-1488
Structural Chemistry - Mononuclear and dinuclear iron complexes are found as key intermediates in many synthetic and biocatalytic reactions, since many of these species are transient and have high...  相似文献   
47.
Depending on the sulfur species, picomoles of different inorganic sulfur compounds can be detected and separated by HPLC in one arrangement in a sample volume less than 50 μl. The combination of fluorescence labelling of reduced inorganic sulfur compounds such as sulfide (S2−), sulfite(SO32− and thiosulfate (S2O32−) with monobromobimane followed by an extraction of elemental sulfur (S°) by chloroform treatment enables the detection of all mentioned sulfur compounds as well as sulfate (remaining aqueous phase) in the same sample. While the derivatized sulfur compounds could be detected by their fluorescence emission at 480 nm, elemental sulfur is identified by its UV absorption at 263 nm. Sulfate in the remaining aqueous phase is detected by HPLC with indirect UV detection at 254 nm. Detection ranges for the different sulfur compounds examined are as follows: sulfide (5 μM to 1.5 mM), sulfite (5 μM to 1.0 mM), thiosulfate (1 μM to 1.5 mM), elemental sulfur (2 μM to 32 mM) and sulfate (5 μM to >1 mM).  相似文献   
48.
N-Heterocyclic carbenes (NHCs) belong to the popular family of organocatalysts used in a wide range of reactions, including that for the synthesis of complex natural products and biologically active compounds. In their organocatalytic manifestation, NHCs are known to impart umpolung reactivity to aldehydes and ketones, which are then exploited in the generation of homoenolate, acyl anion, and enolate equivalents suitable for a plethora of reactions such as annulation, benzoin, Stetter, Claisen rearrangement, cycloaddition, and C–C and C–H bond functionalization reactions and so on. A common thread that runs through these NHC catalyzed reactions is the proposed involvement of an enaminol, also known as the Breslow intermediate, formed by the nucleophilic addition of an NHC to a carbonyl group of a suitable electrophile. In the emerging years of NHC catalysis, enaminol remained elusive and was largely considered a putative intermediate owing to the difficulties encountered in its isolation and characterization. However, in the last decade, synergistic efforts utilizing an array of computational and experimental techniques have helped in gaining important insights into the formation and characterization of Breslow intermediates. Computational studies have suggested that a direct 1,2-proton transfer within the initial zwitterionic intermediate, generated by the action of an NHC on the carbonyl carbon, is energetically prohibitive and hence the participation of other species capable of promoting an assisted proton transfer is more likely. The proton transfer assisted by additives (such as acids, bases, other species, or even a solvent) was found to ease the kinetics of formation of Breslow intermediates. These important details on the formation, in situ detection, isolation, and characterization of the Breslow intermediate are scattered over a series of reports spanning well over a decade, and we intend to consolidate them in this review and provide a critical assessment of these developments. Given the central role of the Breslow intermediate in organocatalytic reactions, this treatise is expected to serve as a valuable source of knowledge on the same.

Molecular insights on the formation, detection, and even isolation of the Breslow intermediate, which is the most important species in N-heterocyclic carbene (NHC) catalysis, as obtained from experimental and computational studies, are presented.  相似文献   
49.
The addition of 2-amino-1,3,4-thiadiazole derivatives with parallel iodination of differently protected glycals has been achieved using a double molar excess of molecular iodine under mild conditions. The corresponding thiadiazole derivatives of N-glycosides were obtained in good yields and anomeric selectivity. The usage of iodine as a catalyst makes this method easy, inexpensive, and successfully useable in reactions with sugars. Thiadiazole derivatives were tested in a panel of three tumor cell lines, MCF-7, HCT116, and HeLa. These compounds initiated biological response in investigated tumor models in a different rate. The MCF-7 is resistant to the tested compounds, and the cytometry assay indicated low increase in cell numbers in the sub- G1 phase. The most sensitive are HCT-116 and HeLa cells. The thiadiazole derivatives have a pro-apoptotic effect on HCT-116 cells. In the case of the HeLa cells, an increase in the number of cells in the sub-G1- phase and the induction of apoptosis was observed.  相似文献   
50.
The repetition of urea-based binding units within the receptor structure does not only lead to monomer properties multiplication. As confirmed by spectroscopic studies, UV-Vis and 1H-NMR in classical or competitive titration mode, the attachment to a carrier allocates the active moieties to mutual positions predetermining the function of the whole receptor molecule. Bivalent receptors form self-aggregates. Dendritic receptors with low dihydrogen phosphate loadings offer a cooperative complexation mode associated with a positive dendritic effect. In higher dihydrogen phosphate concentrations, the dendritic branches act independently and the binding mode changes to 1:1 anion: complexation site. Despite the anchoring, the dendritic receptors retain the superior efficiency and selectivity of a monomer, paving the way to recyclable receptors, desirable for economic and ecological reasons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号