首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   1篇
化学   58篇
力学   1篇
数学   1篇
物理学   9篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   8篇
  2012年   6篇
  2011年   4篇
  2010年   1篇
  2009年   8篇
  2008年   3篇
  2007年   7篇
  2006年   7篇
  2005年   1篇
  2004年   5篇
  2003年   2篇
  2001年   2篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1984年   2篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
51.
Isoconversional kinetic analysis of novolac-type lignophenolic resins cure   总被引:1,自引:0,他引:1  
Several phenomenological models (including simple models by Ozawa and Kissinger and the Kissinger–Akahira–Sunose isoconversional method) have been used to compare the cure kinetics of two lignin-based novolac-type phenolic resins with those from a commercial novolac system. When 45 wt% phenol is substituted by a sulfonated kraft lignin, an important reduction in the activation energy is obtained. This behaviour has been attributed to the incorporation of an extra amount of hydroxymethyl groups in the formulation, as they are present in important quantities in the original lignin structure. KAS isoconversional model shows that the rise in viscosity derived from lignin introduction leads to a moderate change in the limiting stage from a kinetic to a diffusion regime, while condensation reactions, which are favoured by the abundance of lignin hydroxymethyl groups, acquire high relevance in LPF-45 system cure. Finally, competition with other mechanisms initiated at high temperature is reported at high conversion grades for all cases.  相似文献   
52.
Microphase separated epoxy-based materials modified with an amphiphilic poly(styrene-block-ethylene oxide) diblock copolymer (PS-b-PEO) with low amount of PEO-block as well as ternary systems modified with this block copolymer and containing via sol–gel in situ synthesized TiO2 nanoparticles were prepared and characterized. The obtained results indicate that block copolymer had enough amount of PEO-block in order to achieve microphase separated materials for a high range of PS-b-PEO contents, morphologies changing from spherical micelles to long wormlike micelles passing through vesicles upon increasing copolymer amounts. In the case of 20 wt.% inorganic/organic epoxy-based materials, addition of synthesized TiO2 nanoparticles into PS-b-PEO-(DGEBA/MCDEA) system led to location of the nanoparticles in PEO-block/epoxy-rich confined between two microphase separated PS-block-rich phases. Designed highly transparent multiphase inorganic/organic epoxy-based materials possess interesting specific properties such as high UV shielding efficiency and high water repellence.  相似文献   
53.
Meso/nanostructured thermoresponsive thermosetting materials based on an epoxy resin modified with two different molecular weight amphiphilic poly(styrene- block-ethylene oxide) block copolymers (PSEO) and a low molecular weight liquid crystal, 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC), were investigated. A strong influence of the addition of PSEO on the morphology generated in HOBC--(diglicydyl ether of bisphenol A epoxy resin/ m-xylylenediamine) was detected, especially in the case of the addition of PSEO block copolymers with a higher PEO-block content and a lower molecular weight. The morphologies generated in the ternary systems also influenced the thermoresponsive behavior of the HOBC separated phase provoked by applying an external field, such as a temperature gradient and an electrical field. Thermal analysis of the investigated materials allowed for a better understanding of the relationships between generated morphology/thermo-optical properties/PSEO:HOBC ratio, and HOBC content. Controlling the relationship between the morphology and thermoresponsive behavior in micro/nanostructured thermosetting materials based on a 4'-(hexyloxy)-4-biphenylcarbonitrile liquid crystal allows the development of materials which can find application in thermo- and in some cases electroresponsive devices, with a high contrast ratio between transparent and opaque states.  相似文献   
54.
Simultaneous dielectric and near infrared measurements were performed in “real-time” to follow polymerisation reactions on blends of a diglycidyl ether of bisphenol A (DGEBA) epoxy resin with 4,4′-diaminodiphenylmethane (DDM) hardener and a mixture of polysulphone (PSU) and polyetherimide (PEI) as modifier. All the blends had a 10 wt% of PSU/PEI mixture. The effect of the PEI/PSU ratio in the mixture was studied. Monitoring of the α-relaxation (related to vitrification) was performed by dielectric measurements, while epoxy conversion was followed by near infrared spectroscopy. The effect of the PEI/PSU ratio on this behaviour was studied, as well as that of the curing temperature. Obtained results were compared with that of the blends with neat PSU and PEI as modifiers.  相似文献   
55.
The main goal of this work was the synthesis of new azo-functionalized block copolymers (BCP) from epoxidized poly(styrene-b-butadiene-b-styrene) modified with azobenzene groups by one-step facile reaction between the epoxy groups and an azo-amine. The epoxy/amine reaction was verified by Fourier transform infrared spectroscopy. Additionally, we studied the effect of covalent attachment of the azobenzene moieties by analyzing the morphology and the optical anisotropic response of the resulting azo-containing BCP, with respect to solution mixing of the azobenzene as a guest in the BCP host without chemical bonding. Self-assembly of all modified BCP resulted in phase-separated morphologies on the nanometer scale. Nonetheless, segregation of azobenzene aggregates onto the BCP surface was observed in guest–host systems. In relation to the optical anisotropic behaviour of the resulting materials, two distinct optical responses were observed depending on the existence or not of covalent attachment of the azo-chromophores to the BCP.  相似文献   
56.
The goal of this work has been the synthesis of novel materials based on a biodegradable polycaprolactone-block-polytetrahydrofurane-block-polycaprolactone diol (PCL-b-PTHF-b-PCL). The segmented thermoplastic polyurethanes (STPU) have been synthesised in bulk without catalyst at different molar ratios and their characterization has been performed by different techniques. The physic-chemical interactions, responsible for the unique polyurethane properties, have been evaluated by total attenuated Fourier transform infrared spectroscopy (ATR-IR) in the amide I region using a Gaussian deconvolution technique and, on the other hand, atomic force microscopy (AFM) has been employed to determine the phase microstructures. The effect of increase the hard segment content (HS) has been discussed from the viewpoint of the miscibility of hard and soft segments, analyzed by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). The influence of HS content on the microstructure-mechanical property relationships has also been investigated. Special attention has been focused on the wettability of the samples, measured through water contact angle measurements (WCA), to determine the tendency for biocompatibility of the samples.  相似文献   
57.
To be used as templates for nanostructured thermosets, a commercial poly(styrene‐b‐isoprene‐b‐styrene) (SIS) block copolymer (BCP) was epoxidized by three different epoxidation procedures. An exhaustive analysis of methodologies using metal catalyzed/hydrogen peroxide, dimethyldioxirane (DMDO), and meta‐chloroperbenzoic acid (m‐CPBA) was performed to obtain reactive BCPs. The DMDO approach was the best strategy to obtain highly epoxidized SIS BCP (85 mol %) without formation of side products. Careful control in BCP epoxidation by metal catalyzed/hydrogen peroxide and m‐CPBA approaches led to a maximum epoxidation degree (ED) of approximately 60 mol % without the formation of side products. The ED by metal catalyzed/hydrogen peroxide strategy could be further increased to 69 mol %, but a significant amount of crosslinking, ring opening, and polymer chain scission reactions were detected by spectroscopic and chromatographic techniques. The miscibility of epoxidized BCPs with diglycidyl ether of bisphenol‐A epoxy system before and after curing was analyzed to develop nanostructured epoxy thermosets. For ED higher than 69 mol %, BCPs were miscible, while those with lower ED presented macrophase separation. Highly epoxidized BCPs obtained by the DMDO methodology were successfully used to obtain ordered nanodomains inside the epoxy matrix, as determined by atomic force microscopy. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   
58.
Epoxy–aromatic diamine formulations are simultaneously modified with two immiscible thermoplastics (TPs), poly(ether imide) (PEI) and polysulfone (PSF), in concentrations ranging from 5 to 15 wt %. The epoxy monomer is based on diglycidyl ether of bisphenol A and the aromatic diamines (ADs) are either 4,4′‐diaminodiphenylsulfone (DDS) or 4,4′‐methylenebis(3‐chloro 2,6‐diethylaniline) (MCDEA). Using phase diagrams developed in Part I of this series, thermal cycles are selected to generate different morphologies. It is found that, whatever the AD employed, a particulate morphology is obtained when curing blends that are initially homogeneous. In the case of DDS‐cured blends, a unimodal particle size distribution of PSF and PEI dispersed in a continuous epoxy‐rich phase is observed. By contrast, the MCDEA‐cured blends show a bimodal particle size distribution for all PSF/PEI relations that are analyzed. A completely different morphology, characterized by a distribution of irregular TP‐rich domains dispersed in an epoxy‐rich phase (double phase morphology), is obtained when curing blends that are initially immiscible. An X‐ray analysis of the different phases makes it possible to determine their qualitative composition. The dynamic mechanical behavior of fully cured blends is also discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3964–3975, 2004  相似文献   
59.
The reaction-induced phase separation in a tetrafunctional epoxy–cyclic anhydride system modified with polysulfone (PSF) was followed by optical microscopy (OM), light scattering (LS), and scanning electron microscopy (SEM). The selected system was N,N,N′,N′-tetraglycidyl-4,4′-diamino diphenylmethane cured with methyl tetrahydrophthalic anhydride, in the presence of variable PSF concentrations. The different experimental techniques allow us to establish the phase separation mechanism. For modifier concentrations close to the critical point, 10 and 15 wt % PSF, phase separation proceeded by spinodal demixing (SD). For a modifier concentration much lower than the critical point, 5 wt % PSF, phase separation occurred via the nucleation and growth (NG) mode. For 7.5 wt % PSF, depending on the cure temperature, SD or NG was observed. Dynamic mechanical behavior of the resulting materials had been discussed based on fractionation of different species during the phase separation process. The fracture toughness increased significantly when bicontinuous (10 wt % PSF) or phase-inverted (15 wt % PSF) structures were generated. For mixtures containing 15 wt % PSF, the dependence of fracture toughness on the stoichiometric ratio (anhydride groups/epoxy groups) was analyzed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2711–2725, 1999  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号