首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   1篇
化学   58篇
力学   1篇
数学   1篇
物理学   9篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   8篇
  2012年   6篇
  2011年   4篇
  2010年   1篇
  2009年   8篇
  2008年   3篇
  2007年   7篇
  2006年   7篇
  2005年   1篇
  2004年   5篇
  2003年   2篇
  2001年   2篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1984年   2篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
41.
The reaction-induced phase separation in a blend of a commercial polysulfone (PSu) with diepoxide-cyclic anhydride monomers, was studied. The diepoxide was based on diglycidylether of bisphenol A (DGEBA) and the hardener was methyl tetrahydrophthalic anhydride (MTHPA), used in stoichiometric proportion. Benzyldimethylamine (BDMA) was used as initiator. PSu had no influence on the polymerization kinetics, the gel conversion, and the overall heat of reaction per epoxy equivalent. A kinetic model including initiation, propagation, and termination steps was used to estimate the distribution of linear and branched species in the first stages of the chain-wise copolymerization. This distribution, together with the PSu distribution, were taken into account in a thermodynamic model of the blend. The interaction parameter was fitted from experimental determinations of conversions at the start of phase separation, obtained under different conditions. The thermodynamic model was used to explain the complex morphologies developed in materials containing different PSu concentrations as well as their dynamic mechanical response. The shift in glass transition temperatures was explained by the fractionation of different species during the phase separation process. Phase inversion produced a significant decrease of the elastic modulus in the glassy state and a thermoplastic-like behavior of the material in the rubbery region. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1349–1359, 1998  相似文献   
42.
A dicyanate ester resin was modified by blending with polysulfone (PSF) and cured at different temperatures with or without cobalt catalyst. Size exclusion chromatography was used to determine the cyanate conversion until the gel point. The morphology of the cured samples, characterised by scanning electron microscopy, varied from PSF particle structure to a combined particle structure.  相似文献   
43.
In this work, we report the mechanical and electrical properties of carbon nanotubes/epoxy composites prepared with aligned and randomly oriented nanotubes as filler. The samples are disks of 30 mm in diameter and 3 mm in thickness. To obtain the carbon nanotubes alignment, an external electric field (250 VAC; 50 Hz) was applied through the thickness of the sample during all the cure process. The AC electrical current was measured, during the cure, as a strategy to determine the optimum time in which the alignment reaches the maximum value. DC conductivity measured after the cure shows a percolation threshold in the filler content one order of magnitude smaller for composites with aligned nanotubes than for composites with randomly oriented filler (from 0.06 to 0.5 wt%). In the percolation threshold, the achieved conductivity was 1.4×10−5 Sm−1. In both cases, aligned and randomly distributed carbon nanotube composites, the wear resistance increases with the addition of the filler while the Rockwell hardness decreases independently of the nanotubes alignment.  相似文献   
44.
The main goal of this work was the synthesis of new azo-functionalized block copolymers (BCP) from epoxidized poly(styrene-b-butadiene-b-styrene) modified with azobenzene groups by one-step facile reaction between the epoxy groups and an azo-amine. The epoxy/amine reaction was verified by Fourier transform infrared spectroscopy. Additionally, we studied the effect of covalent attachment of the azobenzene moieties by analyzing the morphology and the optical anisotropic response of the resulting azo-containing BCP, with respect to solution mixing of the azobenzene as a guest in the BCP host without chemical bonding. Self-assembly of all modified BCP resulted in phase-separated morphologies on the nanometer scale. Nonetheless, segregation of azobenzene aggregates onto the BCP surface was observed in guest–host systems. In relation to the optical anisotropic behaviour of the resulting materials, two distinct optical responses were observed depending on the existence or not of covalent attachment of the azo-chromophores to the BCP.  相似文献   
45.
In this paper, pressure stability through the suppression of high‐frequency pressure oscillations in the moving particle semi‐implicit (MPS) method is presented. To obtain a stable pressure field, we improve the free‐surface particle search algorithm. Pressure stability follows from the suppression of high‐frequency pressure oscillations due to a correction in the Laplacian operator of the Poisson pressure equation and from the correction of the pressure gradient operator. The three proposed modifications are applied gradually and compared with the MPS method to show the improvements in the hydrostatic pressure and dam‐breaking problems. To validate the suppression of the high‐frequency numerical pressure oscillations, modified MPS methods with and without a removable wall are compared with published dam‐breaking experiment pressure measurements. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
46.
Continuing with our previous work, in which CdSe nanoparticles were functionalized with polystyrene (PS) brushes (CdSe-PS) by the grafting through method, nanocomposites were prepared by adding them to a poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymer. After characterizing CdSe-PS nanoparticles obtained at different polymerization times of 3, 5, and 8 h by means of thermogravimetric analysis and gel permeation chromatography, CdSe-PS nanoparticles obtained after 5 h of polymerization (CdSe-PS(5h)) were chosen as the most adequate for the generation of nanocomposites. Atomic force microscopy (AFM) was used for morphological characterization of SBS/CdSe-PS(5h) nanocomposites. AFM images showed a good dispersion of the nanoparticles in the block copolymer, with the placement of the nanoparticles in the PS domains due to the improved affinity obtained by their functionalization with PS brushes.  相似文献   
47.
Microphase separated epoxy-based materials modified with an amphiphilic poly(styrene-block-ethylene oxide) diblock copolymer (PS-b-PEO) with low amount of PEO-block as well as ternary systems modified with this block copolymer and containing via sol–gel in situ synthesized TiO2 nanoparticles were prepared and characterized. The obtained results indicate that block copolymer had enough amount of PEO-block in order to achieve microphase separated materials for a high range of PS-b-PEO contents, morphologies changing from spherical micelles to long wormlike micelles passing through vesicles upon increasing copolymer amounts. In the case of 20 wt.% inorganic/organic epoxy-based materials, addition of synthesized TiO2 nanoparticles into PS-b-PEO-(DGEBA/MCDEA) system led to location of the nanoparticles in PEO-block/epoxy-rich confined between two microphase separated PS-block-rich phases. Designed highly transparent multiphase inorganic/organic epoxy-based materials possess interesting specific properties such as high UV shielding efficiency and high water repellence.  相似文献   
48.
The architecture of an epoxy matrix was modified by curing the resin with mono‐/diamine mixtures having identical chemical structures. Both hole volume and specific volume variations were studied by positron annihilation lifetime spectroscopy and pressure‐volume‐temperature/density measurements, respectively. The average hole volume of the networks at room temperature slightly increased when the monoaminic chain extender content increased. The increment in the intermolecular interactions between functional groups of the networks chains, due to the less hindered nitrogen introduced by the monoamine, appears to be the responsible for the observed behavior. Besides, only small variations on the specific volume were observed on increasing the monoamine content, which points out that for a cured epoxy system, the chemical structure of the curing agent is mainly responsible for chain packing in the networks. On the other hand, intermolecular interactions between chains were considered as the key factor for fixing stiffness and strength. Thus, it was observed that the increase of the intermolecular interactions with the monoamine content produced a decrease in the sub‐Tg small‐range cooperative motions, which increased the low‐deformation mechanical properties at temperatures between β and α relaxations. This conclusion could be applied to previous investigations with epoxy matrices not fully crosslinked (nonstoichiometric or noncompletely cured formulations). Finally, it was found that fracture properties do not significantly depend either on the hole volume or on the intermolecular interactions. Fracture properties are more dependent on the crosslink density and the glass transition temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1240–1252, 2009  相似文献   
49.
Silicate gels doped with organic dyes have been proposed as solid-state tunable lasers. Photobleaching of the dye under laser excitation is an important phenomenon in this application. The optical absorption and luminescence of SiO2 silica gels doped with Rhodamine B exposed to the second harmonic pulses of a YAG : Nd laser have been studied. In addition to the characteristic exponential decay with the number of pulses, overlapping oscillations in the intensity were observed. This behavior is explained in terms of a long lived metastable electronic excited state of the dye molecules.  相似文献   
50.
Static and dynamic mechanical properties, morphology, and thermal behavior of polycarbonate (PC)/plasticized cellulose acetobutyrate (CAB) blends were investigated to determine whether the plasticizer of the CAB modifies the miscibility of the blend and the mechanical properties of this essentially incompatible blend. In spite of the lack of transparency of the blends, both dynamic mechanical and thermal analysis results show the presence, at all blend compositions studied, of a single glass transition temperature which varies with the composition of the blend. Considering the ternary nature of the blends, we propose that plasticizer migration and the difficulty of discerning the presence of one or two peaks in a narrow temperature range may account for the observed behavior. Scanning electron microscopy confirms the immiscibility of the blends. The blends show large positive deviations of the tensile moduli from linearity and very low ductility. The reported tensile strength data are discussed in terms of several different equations for composites. This mechanical behavior is explained as a consequence of the migration of the plasticizer and of its subsequent antiplasticizing effect on the properties of the blend.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号