首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   603篇
  免费   23篇
  国内免费   10篇
化学   493篇
力学   22篇
数学   37篇
物理学   84篇
  2022年   5篇
  2021年   12篇
  2020年   20篇
  2019年   27篇
  2018年   39篇
  2017年   22篇
  2016年   50篇
  2015年   25篇
  2014年   54篇
  2013年   64篇
  2012年   58篇
  2011年   41篇
  2010年   34篇
  2009年   27篇
  2008年   16篇
  2007年   22篇
  2006年   11篇
  2005年   19篇
  2004年   15篇
  2003年   17篇
  2002年   15篇
  2001年   12篇
  2000年   4篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1987年   1篇
  1980年   1篇
排序方式: 共有636条查询结果,搜索用时 843 毫秒
31.
Metal-free electrocatalysts for oxygen reduction reaction (ORR) are key to the development of efficient, durable, and low-cost alternatives to noble-metal-based electrocatalysts in fuel cell cathodes. In recent years, many efforts are directed to the metal-free catalyst based on heteroatom-doped graphene. In this work, we demonstrate that the graphene surface can be converted into the catalyst for the oxygen reduction by chemical functionalization. In this context, we first synthesized malononitrile-functionalized graphene oxide. Amidoximation of nitrile group and reduction in graphene oxide were then carried out by hydroxylamine in one step. The electrochemical behavior of functionalized graphene-modified electrode for the reduction in oxygen was studied. The results showed that the electrocatalyst fabricated by this method exhibited striking catalytic activities in alkaline solution. In alkaline solution, this catalyst showed a competitive activity to the commercial Pt catalyst via four-electron transfer pathway with better ORR selectivity and stability. In addition, this metal-free electrocatalyst exhibited tolerance to methanol crossover effect. Based on its outstanding performance, this functionalized graphene electrocatalyst showed the promising prospect of a metal-free catalyst for fuel cell with much lower cost than currently used Pt/C catalyst.  相似文献   
32.
<正>α-Aminonitriles were synthesized via a one-pot three-component condensation of aldehydes,amines,and trimethylsilyl cyanide using silica-bonded N-propylpiperazine sulfamic acid(SBPPSA) as a recyclable solid acid at room temperature.SBPPSA showed much the same efficiency when used in consecutive reaction runs.  相似文献   
33.
Silica-bonded N-propyl diethylenetriamine sulfamic acid (SBPDSA) is employed as a recyclable catalyst to synthesize α-aminonitriles. These syntheses involved one-pot condensation of an aldehyde, an amine, and trimethylsilyl cyanide under mild reaction conditions at room temperature. SBPDSA was recycled seven times in the condensation of benzaldehyde, aniline, and trimethylsilyl cyanide without reduction of its catalytic activity.  相似文献   
34.
A method to prepare zinc oxide (ZnO) nanoparticles with a covalently bonded poly(methyl methacrylate) (PMMA) shell by surface initiated atom transfer radical polymerization (ATRP) was reported. First, the initiator for ATRP was covalently bonded onto the surface of zinc oxide nanoparticles through our novel method. Firstly, the surface of ZnO nanoparticle was treated with 3-aminopropyl triethoxysilane, a silane coupling agent, and then this functionalization nanoparticle was reacted with α-chloro phenyl acetyl chloride to prepare atom transfer radical polymerization macroinitiator. The metal-catalyzed radical polymerization of MMA with ZnOmacroinitiator was performed using a copper catalyst system to give the ZnO-based nanoparticles hybrids linking PMMA segments (poly (methyl methacrylate)/zinc oxide nanocomposite). These hybrid nanoparticles had an exceptionally good dispersability in organic solvents and were subjected to detailed characterization using FTIR, TEM and TGA and DSC analyzed.  相似文献   
35.
Two new symmetrical diamines were designed and synthesized having different functional groups such as a pair of phenyl ether linkages, 2,3-diaryl substituted imidazole rings and CF3 groups as pendant, and characterized by FT-IR, 1H and 13C-NMR spectroscopy and elemental analysis. A series of new fluorescent poly(imide-ether)s (PIEs) was prepared by polymerization of the diamines with commercial tetracarboxylic dianhydrides such as pyromellitic dianhydride and 3,3′,4,4′-benzophenone tetracarboxylic dianhydride. The resulting PIEs were amorphous and had intrinsic viscosity [η] in the range of 0.42–0.51 dL/g. The weight average molecular weights (Mw) of these polymers were measured by GPC and were in the range of 28658–35595 g/mol with molecular weight distribution (MWD) of 2.12–2.27. These polymers were readily soluble in a variety of organic solvents and formed low-colored and flexible thin films with cut-off wavelength (λ0) in the range of 385–420 nm, and all PIEs films exhibited high optical transparency. They also possessed good thermal stability with 10% weight loss temperatures (T10%) in the range 486–537°C in N2. The glass transition temperatures (Tg) of PIEs are in the range 251–324°C. These polymers showed fluorescence emission in film and in solution at 459–476 nm with the quantum yields in the range 4–12%.  相似文献   
36.
The system, Pd(OAc)2/imidazolium salts (L2), was found as an efficient catalyst in the Heck coupling reaction of olefins with aryl halides and Suzuki reactions of various aryl halides with aryl boronic acids under aerobic condition. This catalytic system demonstrates great tolerance to a wide range of groups on all substrates of aryl halides, alkenes and aryl boronic acids.  相似文献   
37.
The VO(IV) complexes of tridentate ONN Schiff ligands were synthesized and characterized by IR, UV–Vis and elemental analysis. The electrochemical properties of the vanadyl complexes were investigated by cyclic voltammetry. A good correlation was observed between the oxidation potentials and the electron-withdrawing character of the substituents on the Schiff base ligands, showing the following trend: MeO < H < Br < NO2. The thermogravimetry (TG) and differential thermoanalysis (DTA) of the VO(IV) complexes were carried out in the range of 20–700 °C. The VOL1(OH2) and VOL2(OH2) decomposed in three steps, whereas the VOL3(OH2) and VOL4(OH2) complexes decomposed in two steps. The thermal decomposition of these complexes is closely related to the nature of the Schiff base ligands and proceeds via first-order kinetics. The structures of compounds were determined by ab initio calculations. The optimized molecular geometry and atomic charges were calculated using MP2 method with 6-31G(d) basis. The results suggested that, in the complexes, V(IV) ion is in square-pyramid N2O3 coordination geometry. Also the bond lengths and angles were studied and compared.  相似文献   
38.
Single‐wall carbon nanotubes (SWCNTs) were used as an immobilization matrix to incorporate [Ir(ppy)2(phen‐dione)](PF6) complex onto a glassy carbon electrode for the study of electrocatalytic reduction of periodate ion. Detailed preliminary electrochemical data for the Ir(III)‐complex in acetonitrile solution and for the modified GCE/SWCNTs/[Ir(ppy)2(phen‐dione)](PF6)/CGE are presented. The modified electrode was applied to selective amperometric detection of periodate through its electrocatalytic reduction to iodide at 0.200 V and pH 2.0. The use of amperometry resulted in two calibration plots over the concentration ranges of 1‐20 μM and 20‐450 μM, with a detection limit of 0.6 μM and sensitivity of 198 nA μM?1.  相似文献   
39.
We report on the synthesis of polymeric nanoparticles (PNPs) containing a tetrakis(3-hydroxyphenyl)porphyrin, and their use for the separation of mercury(II) ion. The PNPs were prepared by bulk polymerization from methacrylic acid (the monomer), ethyleneglycol dimethacrylate (the cross-linker), 2,2′-azobisisobutyronitrile (the radical initiator) and the mercury(II) complex of 5,10,15,20-tetrakis(3-hydroxyphenyl)-porphyrin. The Hg(II) ion was then removed by treatment with dilute hydrochloric acid. The PNPs were characterized by colorimetry, FT-IR spectroscopy, and scanning electron microscopy. The material is capable of binding Hg(II) from analyte samples. Bound Hg(II) ions can be eluted with dilute nitric acid and then quantified by cold vapor AAS. The extraction efficiency, the effects of pH, preconcentration and leaching times, sample volume, and of the nature, concentration and volume of eluent were investigated. The maximum adsorption capacity of the PNPs is 249 mg g?1, the relative standard deviation of the AAS assay is 2.2 %, and the limit of detection (3σ) is 8 ng.L?1. The nanoparticles exhibit excellent selectivity for Hg(II) ion over other metal ions and were successfully applied to the selective extraction and determination of Hg(II) ion in spiked water samples.
Figure
Schematic presentation of leaching process of mercury(II) ion from the prepared IIP  相似文献   
40.
Batch equilibrium studies were conducted at 20 ± 0.5 °C with indigenously synthesized spherical resorcinol–formaldehyde resin beads, using radioanalytical technique, to determine their capacity for sorption of cesium ions from alkaline medium. Equilibrium isotherm studies were carried out, by varying the initial concentrations of cesium from 0.1 to 50 mM. The liquid-to-solid phase ratio of ~100 ml:1 g was maintained for all the sorption experiments. The equilibrium data were fitted to Langmuir and Freundlich isotherm models. It was observed that Freundlich isotherm explains sorption process nicely. The effect of resin size on percentage cesium ion uptake was also investigated, and 20–40 mesh size was found to be the optimum particle size. The cesium sorption capacity of the beads was determined to be ~238 mg/g. The kinetics of the sorption was studied at different initial cesium ion concentrations, and the kinetics data were fitted into various kinetics models. The kinetics of the cesium ion sorption was found to be pseudo second-order. The mechanistic steps involved were found to be complex, consisting of both film diffusion and intraparticle diffusion with film diffusion as the rate limiting step.  相似文献   
[首页] « 上一页 [1] [2] [3] 4 [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号