首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1003篇
  免费   36篇
  国内免费   17篇
化学   800篇
晶体学   20篇
力学   26篇
数学   36篇
物理学   174篇
  2024年   6篇
  2023年   11篇
  2022年   89篇
  2021年   103篇
  2020年   37篇
  2019年   39篇
  2018年   58篇
  2017年   33篇
  2016年   61篇
  2015年   49篇
  2014年   57篇
  2013年   65篇
  2012年   102篇
  2011年   98篇
  2010年   60篇
  2009年   35篇
  2008年   24篇
  2007年   22篇
  2006年   17篇
  2005年   17篇
  2004年   8篇
  2003年   10篇
  2002年   6篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1997年   2篇
  1996年   1篇
  1994年   4篇
  1993年   4篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1981年   3篇
  1980年   3篇
  1977年   1篇
  1975年   2篇
  1936年   1篇
  1935年   1篇
  1933年   1篇
排序方式: 共有1056条查询结果,搜索用时 15 毫秒
131.
We present surface reconstruction-induced C−C coupling whereby CO2 is converted into ethylene. The wurtzite phase of CuGaS2. undergoes in situ surface reconstruction, leading to the formation of a thin CuO layer over the pristine catalyst, which facilitates selective conversion of CO2 to ethylene (C2H4). Upon illumination, the catalyst efficiently converts CO2 to C2H4 with 75.1 % selectivity (92.7 % selectivity in terms of Relectron) and a 20.6 μmol g−1 h−1 evolution rate. Subsequent spectroscopic and microscopic studies supported by theoretical analysis revealed operando-generated Cu2+, with the assistance of existing Cu+, functioning as an anchor for the generated *CO and thereby facilitating C−C coupling. This study demonstrates strain-induced in situ surface reconstruction leading to heterojunction formation, which finetunes the oxidation state of Cu and modulates the CO2 reduction reaction pathway to selective formation of ethylene.  相似文献   
132.
The present work reported on the use of graphene oxide (GO) as effective dispersant to isolate different carbon allotropes. The nature of its chemical structure which consists of hydrophobic and hydrophilic components enables GO to behave as surfactant, paving routes for dissolution of graphitic materials and achieving surfactant free all-carbon solutions. Two additional carboneous materials under the family of fullerene (carbon nanofiber—CNF) and graphite (graphene nanoplatelets—GnP) were introduced within the present study to form a new GO based hybrid complexes on top of the commonly investigated carbon nanotube (CNT) based GO hybrid. Investigation on GO stability with respect to particle size and zeta potential measurements showed that the strength of its dispersibility was highly dependent on its morphological size and less affected by the pH. Rheological study revealed that GO shear–strain relationship is highly sensitive to the particle size. The GO viscosity experienced dramatic changes from Newtonian toward shear thinning behaviors as the particle size increases. Thermal conductivity measurement highlighted as high as 8% increase in magnitude with the addition of CNT, CNF, and GnP carbon constituents, indicating that the enhancement may be attributed to the much efficient thermal transport along the conducting path of pristine carbon allotropes.  相似文献   
133.
134.
An Ag(I)-N-heterocylic carbene (NHC) complex, [Ag(L)2]PF6 (L = 1-(2′-methylbenzyl)-3-(2″-propyl)benzimidazolium), was used as a transfer agent for the synthesis of a Pd(II)–NHC complex, formulated as [PdCl(L)2(MeCN)]PF6 (Pd1). The complex Pd1 was characterized by 1H and 13C NMR, FTIR spectroscopy and elemental analysis. Single crystal X-ray diffraction analysis reveals that the Pd(II) atom has a square planar geometry. This complex was screened for its antibacterial potential against the Gram-negative bacteria Escherichia coli (ATCC 25922) and the Gram-positive bacteria Staphylococcus aureus (ATCC 12600). These results are compared with those obtained for a standard antibiotic, ampicillin, and also the corresponding Ag(I)–NHC complex.  相似文献   
135.
The reactions of 1,2‐bis(diphenylphosphanyl)ethane (dppe) with different silver(I) salts facilitated the formation of 1D and 2D coordination polymers, [Ag(dppe)(OAc)]n · nH2O ( 1 ) and [Ag2(dppe)1.5(NO3)2]n ( 2 ), respectively. The complexes were characterized by elemental analysis, ATR‐IR spectroscopy, 1H NMR, 13C NMR, and 31P NMR spectroscopy, and single‐crystal X‐ray diffraction. Structural analysis revealed that complex 1 exhibits a 1D infinite wavy structure, in which each silver(I) ion is bridged by dppe ligands. Structure 2 has a 2D topologically promising architecture that displays a 6.6.6 graphitic net, which corresponds to hnd topology. The nitrate ions and dppe ligands are in a μ2 bridging mode and support the formation of this net. Moreover, significant π–π interactions between the phenyl rings in the apertures of (6,3) grid stabilized complex 2 .  相似文献   
136.
A new mesoporous silica based on the sol–gel material cyanopropyltriethoxysilane (CNPrTEOS) was successfully synthesized by the hydrolysis and condensation of CNPrTEOS in the presence of ammonium solution as catalyst and methanol as solvent. It was used as a solid‐phase extraction sorbent for the simultaneous extraction of three organophosphorus pesticides, namely, polar dicrotophos and non‐polar diazinon and chlorpyrifos. Analysis was performed using high‐performance liquid chromatography with UV detection. CNPrTEOS was characterized by FTIR spectroscopy, field‐emission scanning electron microscopy and nitrogen gas adsorption. The surface area and average pore diameter of the optimum sol–gel CNPrTEOS are 379 m2/g and 4.7 nm (mesoporous), respectively. The proposed solid‐phase extraction based on CNPrTEOS exhibited good linearity in the range of 0.8–100 μg/L, satisfactory precision (1.15–3.82%), high enrichment factor (800) and low limit of detection (0.072–0.091 μg/L). The limits of detection obtained using the proposed solid‐phase extraction method are well below the maximum residue limit set by European Union and are also lower (13.6–48.5×) than that obtained by using a commercial CN‐SPE cartridge (0.98–4.41 μg/L). The new mesoporous sol–gel CNPrTEOS showed promising alternative as SPE sorbent material for the simultaneous extraction of polar and non‐polar organophosphorus pesticides.  相似文献   
137.
Treatment of a 1 : 1 mixture of the thiazole-based amino acids 8a and 8b with FDPP-i-Pr(2)NEt in CH(3)CN gave a mixture of the cyclic trimers 14, 15, 16 and 17 and the cyclic tetramers 19 and 23 in the ratio 2 : 7 : 5 : 8 : 1 : 1 and in a combined yield of 70%. Separate coupling reactions between the bisimidazole amino acid 45 and the thiazole/oxazole amino acids 43a and 42a in the presence of FDPP-i-Pr(2)NEt led to the bisimidazole based cyclic trimers 55 and 57 respectively (54-57%) and to the cyclic tetramer 56 (8-11%). Similar coupling reactions involving the bisthiazole and bisoxazole amino acids 49 and 47 with the imidazole/oxazole/thiazole amino acids 41a, 42a and 43a gave rise to the library of oxazole, thiazole and imidazole-based cyclic peptides 58, 59, 60, 61, 62, 63, 64 and 65. A coupling reaction between the bisthiazole amino acid 49 and the oxazole amino acid 73 led to an efficient (36% overall) synthesis of bistratamide H (67) found in the ascidian Lissoclinum bistratum. Coupling reactions involving oxazolines with thiazole amino acids were less successful. Thus, a coupling reaction between the phenylalanine-based oxazoline amino acid 71a and either the thiazole amino acid 8a or the bisthiazole amino acid 74 gave only a 2% yield of the cyclic hexapeptide didmolamide A (4) found in the ascidian Didemnum molle. Didmolamide B (68) was obtained in 9% yield from a coupling reaction between 74 and the phenylalanine threonine amino acid 72, using either FDPP or DPPA.  相似文献   
138.
The present research is based on the fabrication preparation of CS/PVA/GG blended hydrogel with nontoxic tetra orthosilicate (TEOS) for sustained paracetamol release. Different TEOS percentages were used because of their nontoxic behavior to study newly designed hydrogels’ crosslinking and physicochemical properties. These hydrogels were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and wetting to determine the functional, surface morphology, hydrophilic, or hydrophobic properties. The swelling analysis in different media, degradation in PBS, and drug release kinetics were conducted to observe their response against corresponding media. The FTIR analysis confirmed the components added and crosslinking between them, and surface morphology confirmed different surface and wetting behavior due to different crosslinking. In various solvents, including water, buffer, and electrolyte solutions, the swelling behaviour of hydrogel was investigated and observed that TEOS amount caused less hydrogel swelling. In acidic pH, hydrogels swell the most, while they swell the least at pH 7 or higher. These hydrogels are pH-sensitive and appropriate for controlled drug release. These hydrogels demonstrated that, as the ionic concentration was increased, swelling decreased due to decreased osmotic pressure in various electrolyte solutions. The antimicrobial analysis revealed that these hydrogels are highly antibacterial against Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram negative (Pseudomonas aeruginosa and Escherichia coli) bacterial strains. The drug release mechanism was 98% in phosphate buffer saline (PBS) media at pH 7.4 in 140 min. To analyze drug release behaviour, the drug release kinetics was assessed against different mathematical models (such as zero and first order, Higuchi, Baker–Lonsdale, Hixson, and Peppas). It was found that hydrogel (CPG2) follows the Peppas model with the highest value of regression (R2 = 0.98509). Hence, from the results, these hydrogels could be a potential biomaterial for wound dressing in biomedical applications.  相似文献   
139.
In the present in-silico study, various computational techniques were applied to determine potent compounds against TRAP1 kinase. The pharmacophore hypothesis DHHRR_1 consists of important features required for activity. The 3D QSAR study showed a statistically significant model with R2 = 0.96 and Q2 = 0.57. Leave one out (LOO) cross-validation (R2 CV = 0.58) was used to validate the QSAR model. The molecular docking study showed maximum XP docking scores (−11.265, −10.532, −10.422, −10.827, −10.753 kcal/mol) for potent pyrazole analogs (42, 46, 49, 56, 43), respectively, with significant interactions with amino acid residues (ASP 594, CYS 532, PHE 583, SER 536) against TRAP1 kinase receptors (PDB ID: 5Y3N). Furthermore, the docking results were validated using the 100 ns MD simulations performed for the selected five docked complexes. The selected inhibitors showed relatively higher binding affinities than the TRAP1 inhibitor molecules present in the literature. The ZINC database was used for a virtual screening study that screened ZINC05297837, ZINC05434822, and ZINC72286418, which showed similar binding interactions to those shown by potent ligands. Absorption, distribution, metabolism, and excretion (ADME) analysis showed noticeable results. The results of the study may be helpful for the further development of potent TRAP1 inhibitors  相似文献   
140.
Diabetes mellitus is a global threat affecting millions of people of different age groups. In recent years, the development of naturally derived anti-diabetic agents has gained popularity. Okra is a common vegetable containing important bioactive components such as abscisic acid (ABA). ABA, a phytohormone, has been shown to elicit potent anti-diabetic effects in mouse models. Keeping its anti-diabetic potential in mind, in silico study was performed to explore its role in inhibiting proteins relevant to diabetes mellitus- 11β-hydroxysteroid dehydrogenase (11β-HSD1), aldose reductase, glucokinase, glutamine-fructose-6-phosphate amidotransferase (GFAT), peroxisome proliferator-activated receptor-gamma (PPAR-gamma), and Sirtuin family of NAD(+)-dependent protein deacetylases 6 (SIRT6). A comparative study of the ABA-protein docked complex with already known inhibitors of these proteins relevant to diabetes was compared to explore the inhibitory potential. Calculation of molecular binding energy (ΔG), inhibition constant (pKi), and prediction of pharmacokinetics and pharmacodynamics properties were performed. The molecular docking investigation of ABA with 11-HSD1, GFAT, PPAR-gamma, and SIRT6 revealed considerably low binding energy (ΔG from −8.1 to −7.3 Kcal/mol) and predicted inhibition constant (pKi from 6.01 to 5.21 µM). The ADMET study revealed that ABA is a promising drug candidate without any hazardous effect following all current drug-likeness guidelines such as Lipinski, Ghose, Veber, Egan, and Muegge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号