首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1167篇
  免费   45篇
  国内免费   17篇
化学   922篇
晶体学   24篇
力学   30篇
综合类   1篇
数学   54篇
物理学   198篇
  2024年   6篇
  2023年   12篇
  2022年   94篇
  2021年   110篇
  2020年   43篇
  2019年   44篇
  2018年   62篇
  2017年   43篇
  2016年   71篇
  2015年   58篇
  2014年   67篇
  2013年   87篇
  2012年   116篇
  2011年   105篇
  2010年   68篇
  2009年   39篇
  2008年   32篇
  2007年   25篇
  2006年   27篇
  2005年   24篇
  2004年   8篇
  2003年   14篇
  2002年   10篇
  2001年   4篇
  2000年   5篇
  1999年   2篇
  1997年   3篇
  1996年   1篇
  1994年   5篇
  1993年   6篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1981年   3篇
  1980年   4篇
  1977年   3篇
  1975年   2篇
  1936年   1篇
  1935年   1篇
  1933年   1篇
排序方式: 共有1229条查询结果,搜索用时 15 毫秒
71.
Functionalized magnetite nanoparticles (Fe3O4) were prepared using the coprecipitation method followed by functionalization with a multipotent antioxidant (MPAO). The MPAO was synthesized and analyzed using FTIR and NMR techniques. In this study, the functionalized nanoparticles (IONP@AO) were produced and evaluated using the FTIR, XRD, Raman, HRTEM, FESEM, VSM, and EDX techniques. The average determined particle size of IONP@AO was 10 nanometers. In addition, it demonstrated superparamagnetic properties. The magnitude of saturation magnetization value attained was 45 emu g−1. Virtual screenings of the MPAO’s potential bioactivities and safety profile were performed using PASS analysis and ADMET studies before the synthesis step. For the DPPH test, IONP@AO was found to have a four-fold greater ability to scavenge free radicals than unfunctional IONP. The antimicrobial properties of IONP@AO were also demonstrated against a variety of bacteria and fungi. The interaction of developed nanoantioxiants with biomolecules makes it a broad-spectrum candidate in biomedicine and nanomedicine.  相似文献   
72.
The biocathode in a microbial fuel cell (MFC) system is a promising and a cheap alternative method to improve cathode reaction performance. This study aims to identify the effect of the electrode combination between non-chemical modified stainless steel (SS) and graphite fibre brush (GFB) for constructing bio-electrodes in an MFC. In this study, the MFC had two chambers, separated by a cation exchange membrane, and underwent a total of four different treatments with different electrode arrangements (anodeǁcathode)—SSǁSS (control), GFBǁSS, GFBǁGFB and SSǁGFB. Both electrodes were heat-treated to improve surface oxidation. On the 20th day of the operation, the GFBǁGFB arrangement generated the highest power density, up to 3.03 W/m3 (177 A/m3), followed by the SSǁGFB (0.0106 W/m3, 0.412 A/m3), the GFBǁSS (0.0283 W/m3, 17.1 A/m3), and the SSǁSS arrangements (0.0069 W/m−3, 1.64 A/m3). The GFBǁGFB had the lowest internal resistance (0.2 kΩ), corresponding to the highest power output. The other electrode arrangements, SSǁGFB, GFBǁSS, and SSǁSS, showed very high internal resistance (82 kΩ, 2.1 kΩ and 18 kΩ, respectively) due to the low proton and electron movement activity in the MFC systems. The results show that GFB materials can be used as anode and cathode in a fully biotic MFC system.  相似文献   
73.
Three natural basaltic samples were collected and used as efficient catalysts for the liquid‐phase synthesis of n‐butyl acetate. The samples were characterized by X‐ray fluorescence analysis (XRF), X‐ray diffraction (XRD), thermogravimetry (TG), differential thermal analysis (DTA), Fourier transform infrared (FT‐IR), scanning electron microscopy (SEM), and N2 sorption. The acidity of the samples was determined using isopropanol dehydration, and the strength of the acid sites was measured using chemisorption of basic probes. The catalytic activity of the samples towards the esterification of acetic acid with n‐butanol was extensively examined. The influence of different parameters, such as the reaction refluxing time, molar ratio, catalyst loading, reusability, and calcination temperature, on the esterification reaction was studied in detail. The results revealed that all samples had high catalytic activity with a selectivity of 100% to n‐butyl acetate formation. In addition, the sample obtained from the top hill of Volcano had the highest activity with a 80% yield of n‐butyl acetate. Moreover, the significant catalytic performances were well correlated with the acidity of the samples and to the reaction rate constants.  相似文献   
74.
Eruca sativa Mill. (E. sativa) leaves recently grabbed the attention of scientific communities around the world due to its potent bioactivity. Therefore, the present study investigates the metabolite profiling of the ethanolic crude extract of E. sativa leaves using high resolution-liquid chromatography-mass spectrometry (HR-LC/MS), including antibacterial, antioxidant and anticancer potential against human colorectal carcinoma cell lines. In addition, computer-aided analysis was performed for determining the pharmacokinetic properties and toxicity prediction of the identified compounds. Our results show that E. sativa contains several bioactive compounds, such as vitamins, fatty acids, alkaloids, flavonoids, terpenoids and phenols. Furthermore, the antibacterial assay of E. sativa extract showed inhibitory effects of the tested pathogenic bacterial strains. Moreover, the antioxidant activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) were found to be IC50 = 66.16 μg/mL and 76.05 μg/mL, respectively. E. sativa also showed promising anticancer activity against both the colorectal cancer cells HCT-116 (IC50 = 64.91 μg/mL) and Caco-2 (IC50 = 83.98 μg/mL) in a dose/time dependent manner. The phytoconstituents identified showed promising pharmacokinetics properties, representing a valuable source for drug or nutraceutical development. These investigations will lead to the further exploration as well as development of E. sativa-based nutraceutical products.  相似文献   
75.
Plumbagin, a hydroxy-1,4-naphthoquinone, confers neuroprotection via antioxidant and anti-inflammatory properties. The present study aimed to assess the effect of plumbagin on behavioral and memory deficits induced by intrahippocampal administration of Quinolinic acid (QA) in male Wistar rats and reveal the associated mechanisms. QA (300 nM/4 μL in Normal saline) was administered i.c.v. in the hippocampus. QA administration caused depression-like behavior (forced swim test and tail suspension tests), anxiety-like behavior (open field test and elevated plus maze), and elevated anhedonia behavior (sucrose preference test). Furthermore, oxidative–nitrosative stress (increased nitrite content and lipid peroxidation with reduction of GSH), inflammation (increased IL-1β), cholinergic dysfunction, and mitochondrial complex (I, II, and IV) dysfunction were observed in the hippocampus region of QA-treated rats as compared to normal controls. Plumbagin (10 and 20 mg/kg; p.o.) treatment for 21 days significantly ameliorated behavioral and memory deficits in QA-administered rats. Moreover, plumbagin treatment restored the GSH level and reduced the MDA and nitrite level in the hippocampus. Furthermore, QA-induced cholinergic dysfunction and mitochondrial impairment were found to be ameliorated by plumbagin treatment. In conclusion, our results suggested that plumbagin offers a neuroprotective potential that could serve as a promising pharmacological approach to mitigate neurobehavioral changes associated with neurodegeneration.  相似文献   
76.
Intercalation of d-gluconate into the interlamellae of zinc-aluminum-layered double hydroxide for the formation of a food additive-inorganic layered nanohybrid was accomplished by both direct (co-precipitation) and indirect (ion-exchange) methods. Powder X-ray diffraction (PXRD) together with CHNS and Fourier transform infrared (FTIR) analyses showed that the hybridization of d-gluconate with pure phase and good crystallinity was successfully accomplished by a direct method within ranges of pH 7.5-10, Zn to Al initial molar ratio of 2-5 and DG concentration of 0.05-0.3 M. The same nanohybrid compound was also prepared using an indirect ion-exchange method by contacting the pre-prepared LDH with 0.1 M DG for 80 min. The basal spacing of the nanohybrid synthesized by the direct method ranged between 9 and 12.0 Å while that synthesized by the indirect ion-exchange method was 14.0 Å. The crystallinity of the latter was higher than the former and it inherited the crystallinity of the precursor. This work shows that a food additive, such as d-gluconate, can be hybridized into an inorganic host for the formation of a new nanohybrid compound, which can be used to regulate the release of acidity in the food industry.  相似文献   
77.
Reactions of 2‐bromo‐6‐(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)pyridine ( L1 ) and 2,6‐bis(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)pyridine ( L2 ) with NiCl2 and NiBr2 led to the formation of their respective metal complexes [NiCl2(L1)] ( 1 ), [NiBr2(L1)] ( 2 ) and [NiBr2(L2)] ( 3 ) in moderate to high yields. The complexes were characterized using elemental analyses, mass spectrometry and single‐crystal X‐ray diffraction for 2 . The solid‐state structure of 2 confirmed the bidentate coordination mode of L1 and formation of a monometallic compound. Activation of the nickel(II) pre‐catalysts with methylaluminoxane afforded active catalysts in the ethylene oligomerization reaction to produce mainly butenes (84–86%). In contrast, activation of nickel(II) pre‐catalyst 2 with ethylaluminium dichloride resulted in partial Friedel–Crafts alkylation of the toluene solvent by the preformed oligomers. Complex structure, nature of co‐catalyst employed, type of solvent and reaction conditions influenced the catalytic behaviour of these pre‐catalysts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
78.
Experimental results on the extrapolated ultimate enhancement factors of o-, m-, and p-xylene protons at 1.53 mT are obtained for MC800 asphalt solutions. The ultimate enhancement factors are found such as ?26.9, ?25.7, and ?11.7 for o-, m-, and p-xylene, respectively. These results show that the solvent proton Overhauser effect cannot reach the extrapolated enhancement of ?330 in the extreme narrowing case because of occurrence of small scalar interactions in addition to the dipole–dipole interactions between solvent protons and asphalt electrons. The ortho, meta, and para positions of the –CH3 group change the nature of the interactions. The nuclear magnetic resonance (NMR) signal enhancements exhibit a sensitive behavior depending on the chemical environment differing from isomer to isomer. The solvation or association of asphalt in xylene isomers at room temperature is revealed. Quantum chemical calculations for the xylene isomers with the electronic and optical properties; absorption wavelengths, excitation energy, atomic charges, dipole moment and frontier molecular orbital energies, molecular electrostatic potential; are carried out using the density functional theory (DFT) method (B3LYP) with the 6-311G(d,p) basis set by the standard Gaussian 09 software package program. The relative importance of scalar and translational dipolar interaction parameters determined in dynamic nuclear polarization experiments is explained by the electronic structure of HOMO–LUMO of the xylene isomers.  相似文献   
79.
High-performance oxide vertical-cavity surface-emitting (VCSEL) laser is fabricated, and its usefulness is demonstrated as a suitable transmitting light source at 850 nm operating wavelength for Gigabit Ethernet application. Utilization of barrier reduction layers reveals low-threshold current requirement for operation at high modulation bandwidth. The electrical and optical characteristics, measured from the fabricated VCSEL, are simulated for Gigabit Ethernet transmission. Data rates of 1.25 Gbps with a bit error rate of 10−11 are achieved by the use of a specific multimode network simulator.  相似文献   
80.
Photopyroelectric spectroscopy is used to study the band-gap energy of the ceramic (ZnO + xSb2O3), x = 0.1 - 1.5 mol% and the ceramic (ZnO + 0.4 mol%  Bi2O3 + xSb2O3), x = 0 - 1.5 mol% sintered at isothermal temperature, 1280 °C, for 1 and 2 hours. The wavelength of incident light, modulated at 9 Hz, is kept in the visible range and the photopyroelectric spectrum with reference to doping level is discussed. The band-gap energy is reduced from 3.2 eV, for pure ZnO, to 2.86, 2.83 eV for the samples without Bi2O3at 0.1 mol% of Sb2O3 for 1 and 2 hours of sintering time, respectively. It is reduced to 2.83, 2.80 eV for the samples with Bi2O3 at 0 mol% of Sb2O3 for 1 and 2 hours of sintering time, respectively. The steepness factor σA which characterizes the slop of exponential optical absorption is discussed with reference to the doping level. The phase constitution is determined by XRD analysis; microstructure and compositional analysis of the selected areas are analyzed using SEM and EDX.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号