首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   4篇
化学   125篇
力学   13篇
数学   24篇
物理学   52篇
  2024年   3篇
  2023年   1篇
  2022年   9篇
  2021年   9篇
  2020年   7篇
  2019年   17篇
  2018年   15篇
  2017年   16篇
  2016年   10篇
  2015年   5篇
  2014年   12篇
  2013年   25篇
  2012年   19篇
  2011年   14篇
  2010年   16篇
  2009年   15篇
  2008年   6篇
  2007年   3篇
  2005年   3篇
  2004年   4篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
排序方式: 共有214条查询结果,搜索用时 0 毫秒
31.
Based on the theory of stabilization of fractional-order LTI interval systems, a simple controller for stabilization of a class of fractional-order chaotic systems is proposed in this paper. We consider the structure of the chaotic systems as fractional-order LTI interval systems due to the limited amplitude of chaotic trajectories. We introduce a simple feedback controller for the interval system and then, based on a recently established theorem for stabilization of interval systems, we reach to a linear matrix inequality (LMI) problem. Solving the LMI yields an appropriate decoupling feedback control law which suffices to bring the chaotic trajectories to the origin. Several illustrative examples are given which show the effectiveness of the method.  相似文献   
32.
33.
    
Levels of anticancer agents in cancer patients' body fluids are typically measured to adjust drug dosages or improve treatment results. The goal of this research is to present a new method for extracting bicalutamide (BCT) from biological samples using a responsive polymeric nanoadsorbent that reacts to temperature and near-infrared radiation (NIR). To achieve this, the surface layers of tungsten disulfide nanosheets are modified using poly (N-vinylcaprolactam) and three generations of polymeric dendrimers. The adsorbent product is then characterized using thermogravimetric analysis, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and X-ray diffraction techniques. The drug loading operation on the proposed adsorbent is studied through central composite design and response surface strategy, with optimization for temperature (25–45°C), pH (5–9), and contact time (2–18 min). Nonlinear kinetic and adsorption isotherm analysis results show the best fit with Langmuir and pseudo-second-order models. The drug release process from the BCT-loaded adsorbent is investigated via an HPLC-UV system under both NIR-irradiated and non-irradiated conditions. The suggested method demonstrates remarkable recovery rates for BCT spikes from urine (95.23%) and plasma (93.33%), respectively. Overall, the recommended strategy can be regarded as a potent analytical tool for evaluating BCT in complex biosamples.  相似文献   
34.
    
Cyanide is a poisonous and dangerous chemical that binds to metals in metalloenzymes, especially cytochrome C oxidase and, thus, interferes with their functionalities. Different pathways and enzymes are involved during cyanide biodegradation, and cyanide hydratase is one of the enzymes that is involved in such a process. In this study, cyanide resistance and cyanide degradation were studied using 24 fungal strains in order to find the strain with the best capacity for cyanide bioremediation. To confirm the capacity of the tested strains, cyano-bioremediation and the presence of the gene that is responsible for the cyanide detoxification was assessed. From the tested organisms, Trichoderma harzianum (T. harzianum) had a significant capability to resist and degrade cyanide at a 15 mM concentration, where it achieved an efficiency of 75% in 7 days. The gene network analysis of enzymes that are involved in cyanide degradation revealed the involvement of cyanide hydratase, dipeptidase, carbon–nitrogen hydrolase-like protein, and ATP adenylyltransferase. This study revealed that T. harzianum was more efficient in degrading cyanide than the other tested fungal organisms, and molecular analysis confirmed the experimental observations.  相似文献   
35.
A three-dimensional finite element method has been implemented to predict the transmission loss of a packed muffler and a parallel baffle silencer for a given frequency range. Iso-parametric quadratic tetrahedral elements have been chosen due to their flexibility and accuracy in modeling geometries with curved surfaces. For accurate physical representation, perforated plates are modeled with complex acoustic impedance while absorption linings are modeled as a bulk media with a complex speed of sound and mean density. Domain decomposition and parallel processing techniques are applied to address the high computational and memory requirements. The comparison of the computationally predicted and the experimentally measured transmission loss shows a good agreement.  相似文献   
36.
A method has been introduced for quantitative determination of protein content in yogurt samples based on the characteristic absorbance of protein in 1800-1500 cm− 1 spectral region by mid-FTIR spectroscopy and chemometrics. Successive Projection Algorithm (SPA) wavelength selection procedure, coupled with feed forward Back-Propagation Artificial Neural Network (BP-ANN) model was the benefited chemometric technique. Relative Error of Prediction (REP) in BP-ANN and SPA-BP-ANN methods for training set was 7.25 and 3.70 respectively. Considering the complexity of the sample, the ANN model was found to be reliable, while the proposed method is rapid and simple, without any sample preparation step.  相似文献   
37.
38.
    
Quaternary protoberberine alkaloids belong to a pharmaceutically important class of isoquinoline alkaloids associated with bactericidal, fungicidal, insecticidal and antiviral activities. As traditional medicine gains wider acceptance, quick and robust analytical methods for the screening and analysis of plants containing these compounds attract considerable interest. Thin‐layer chromatography (TLC) combined with matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) is a powerful technique but suffers from dilution of the TLC bands resulting in decreased sensitivity and masking of signals in the low‐mass region both due to addition of matrix. This study integrates for the first time conventional silica gel TLC and laser desorption ionization mass spectrometry (LDI‐MS) thus eliminating the need for any external matrix. Successful separation of berberine (Rf = 0.56) and palmatine (Rf = 0.46) from Berberis barandana including their identification by MS are demonstrated. Furthermore, a robust electrospray ionization (ESI)‐MS method utilizing residual sample from TLC for quantification of berberine applying selected reaction monitoring and standard addition method is presented. The amount of berberine in the plant root prepared for the study was determined to be 0.70% (w/w). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
39.
    
Textiles coated with silver nanowires (AgNWs) are effective at suppressing radiative heat loss without sacrificing breathability. Many reports present the applicability of AgNWs as IR-reflective wearable textiles, where such studies partially evaluate the parameters for practical usage for large-scale production. In this study, the effect of the two industrial coating methods and the loading value of AgNWs on the performance of AgNWs-coated fabric (AgNWs-CF) is reported. The AgNWs were synthesized by the polyol process and applied onto the surface of cotton fabric using either dip- or spray-coating methods with variable loading levels of AgNWs. X-ray diffraction, scanning electron microscopy (SEM), infrared (IR) reflectance, water vapor permeability (WVP), and electrical resistance properties were characterized. The results report the successful synthesis of AgNWs with a 30 μm length. The results also show that the spray coating method has a better performance for reflecting the IR radiation to the body, which increases with a greater loading level of the AgNWs. The antibacterial results show a good inhibition zone for cotton fabric coated by both methods, where the spray-coated fabric has a better performance overall. The results also show the coated fabric with AgNWs maintains the level of fabric breathability similar to control samples. AgNWs-CFs have potential utility for cold weather protective clothing in which heat dissipation is attenuated, along with applications such as wound dressing materials that provide antibacterial protection.  相似文献   
40.
There is a huge interest in making and applying innovating functional devices based on basic sciences (like physics) to improve plant growth and resistance against various stress conditions. This research was carried out in order to investigate effects of cold plasma on expressions of heat shock factor A4A (HSFA4A), plant growth and post reactions to salt stress. Wheat seedlings were treated with plasma (0.84 W/cm2 surface power densities) at different exposure times. In both three and 6 h after plasma, inductions in expressions of HSFA4A were recorded in roots, compared to control. Six hours after treatments, plasma-induced the shoot expressions of HSFA4A in the treated seedlings, contrasted to 3 h. Plasma treatment caused not the only enhancement in shoot fresh and dry mass and total leaf area, but also alleviated adverse impacts of salinity. Destroying impacts of salinity on chlorophyll contents were mitigated by plasma. Peroxidase activity was decreased by 27% for salinity treatment alone over control, while it was increased by 15% for plasma and salinity-treated samples, compared to salinity control. The highest activities of phenylalanine ammonia lyase (PAL) were found in plasma treatment alone. PAL activity was found to be higher in plasma-pretreated seedlings counteracted to salt stress, relative to the salinity control. The plasma treatment may act as an effective elicitor to modify gene expression, thereby improving plant growth and resistance. Plasma technology should be considered as a new functional technology in plant sciences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号