Artificially fabricated hydroxyapatite (HAP) shows excellent biocompatibility with various kinds of cells and tissues which makes it an ideal candidate for a bone substitute material. In this study, hydroxyapatite nanoparticles have been prepared by using the wet chemical precipitation method using calcium nitrate tetra-hydrate [Ca(NO3)2.4H2O] and di-ammonium hydrogen phosphate [(NH4)2 HPO4] as precursors. The composite scaffolds have been prepared by a freeze-drying method with hydroxyapatite, chitosan, and gelatin which form a 3D network of interconnected pores. Glutaraldehyde solution has been used in the scaffolds to crosslink the amino groups (|NH2) of gelatin with the aldehyde groups (|CHO) of chitosan. The X-ray diffraction (XRD) performed on different scaffolds indicates that the incorporation of a certain amount of hydroxyapatite has no influence on the chitosan/gelatin network and at the same time, the organic matrix does not affect the crystallinity of hydroxyapatite. Transmission electron microscope (TEM) images show the needle-like crystal structure of hydroxyapatite nanoparticle. Scanning Electron Microscope (SEM) analysis shows an interconnected porous network in the scaffold where HAP nanoparticles are found to be dispersed in the biopolymer matrix. Fourier transforms infrared spectroscopy (FTIR) confirms the presence of hydroxyl group (OH-) , phosphate group (PO3-4) , carbonate group (CO2-3) , imine group (C=N), etc. TGA reveals the thermal stability of the scaffolds. The cytotoxicity of the scaffolds is examined qualitatively by VERO (animal cell) cell and quantitatively by MTTassay. The MTT-assay suggests keeping the weight percentage of glutaraldehyde solution lower than 0.2%. The result found from this study demonstrated that a proper bone replacing scaffold can be made up by controlling the amount of hydroxyapatite, gelatin, and chitosan which will be biocompatible, biodegradable, and biofriendly for any living organism. 相似文献
In order to improve the membrane lipophilicity and the affinity towards the environment of lipid bilayers, squalene (SQ) could be conjugated to phospholipids in the formation of liposomes. The effect of membrane composition and concentrations on the degradation of liposomes prepared via the extrusion method was investigated. Liposomes were prepared using a mixture of SQ, cholesterol (CH) and Tween80 (TW80). Based on the optimal conditions, liposome batches were prepared in the absence and presence of SQ. Their physicochemical and stability behavior were evaluated as a function of liposome constituent. From the optimization study, the liposomal formulation containing 5% (w/w) mixed soy lecithin (ML), 0.5% (w/w) SQ, 0.3% (w/w) CH and 0.75% (w/w) TW80 had optimal physicochemical properties and displayed a unilamellar structure. Liposome prepared using the optimal formulation had a low particle size (158.31 ± 2.96 nm) and acceptable %increase in the particle size (15.09% ± 3.76%) and %trolox equivalent antioxidant capacity (%TEAC) loss (35.69% ± 0.72%) against UV light treatment (280–320 nm) for 6 h. The interesting outcome of this research was the association of naturally occurring substance SQ for size reduction without the extra input of energy or mechanical procedures, and improvement of vesicle stability and antioxidant activity of ML-based liposome. This study also demonstrated that the presence of SQ in the membrane might increase the acyl chain dynamics and decrease the viscosity of the dispersion, thereby limiting long-term stability of the liposome. 相似文献
A new, potentially polydentate sulfur–nitrogen chelating agent, 2,6–bis(N-methyl-S-methyldithiocarbazato)pyridine (L) has
been synthesized and characterized. With nickel(II) salts, the ligand yields complexes of empirical formula NiLX2·nH2O (X=Cl−,
NCS− or NO3−; n=0 or 1) in which it behaves as a quadridentate NSSN chelating agent, coordinating to the nickel(II) ion via
the two amino nitrogen atoms and the two sulfur atoms. Magnetic and spectral evidence support a distorted octahedral structure
for these complexes. The ligand reacts with copper(II), platinum(II) and palladium(II) salts to yield homo-binuclear complexes
of general formula [M2LX4]·nSol (M=CuII, PtII or PdII; X=Cl− or Br−; n=0.5, 1 or 2; Sol=H2O, MeOH or MeCOMe), in which each
of the metal ions is in a square-planar environment. These complexes have been characterized by a variety of physicochemical
techniques.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
A new class of tetraiminetetraamide macrocyclic (Ph4[20]tetraene, N8O4, and Ph6[20]tetraene, N8O4) complexes have been prepared through the metal ion controlled reaction of 1,2-diphenylethane-1,2-dione dihydrazone (DPEDDH) with succinic acid [ML1X2] or phthalic acid [ML2X2] [M=Mn, Co, Ni, Cu or Zn; X=Cl or NO3]. The structures of the complexes have been elucidated on the basis of i.r, 1H-n.m.r, e.p.r. and electronic spectral data and conductance, as well as magnetic, properties. An octahedral geometry is assigned for all the complexes, involving coordination of the all-imine nitrogens. 相似文献
Iron polymethacrylate was synthesized by free radical solution polymerization of methacrylic acid, followed by replacement of the carboxylic proton with iron. Thermal volatilization analysis and thermogravimetry were used to study its thermal stability from ambient temperature up to 500oC. The results reveal that ferric oxide is left as residue at the end of the thermal degradation experiments.The authors dedicate this paper to the memory of the late Dr. Mohammad Zulfiqar of Quaid i Azam University, Islamabad, Pakistan. 相似文献
New complexes of general empirical formula, [M(NS)2] · nCHCl3 (M = NiII, CuII, PdII or PtII; NS = anionic form of the thiophene-2-aldehyde Schiff bases of S-methyl- and S-benzyldithiocarbazate; n = 0, 1) have been synthesized and characterized by physico-chemical techniques. Magnetic and spectroscopic evidence support
a square-planar structure for these complexes. The crystal structures of the [Ni(tasbz)2] and [Cu(tasbz)2] · CHCl3 complexes (tasbz = anionic form of the thiophene-2-aldehyde Schiff base of S-benzyldithiocarbazate) have been determined by X-ray diffraction. Both complexes have a trans-planar structure in which the two Schiff base ligands are coordinated to the metal(II) ion as uninegatively charged bidentate
ligands via the thiolate sulfur and the azomethine nitrogen atoms.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
This paper reports a simple methodology for the synthesis of a polyaniline/titanium oxide/graphene hybrid (Pani/TiO2/GN) using a simple methodology, and their application as a supercapacitor electrode material for energy storage. The Pani/TiO2/GN hybrid was prepared by a simple approach by simultaneous generation of Pani and TiO2 in situ from aniline and titanium iso-propoxide, respectively, in the presence of GN under ice bath conditions. The incorporation of GN improved the electrical conductivity of Pani and helped to decrease the charge transfer resistance, whereas TiO2 generation by an in situ method increased the surface area considerably and enhanced the capacitance of the Pani/TiO2/GN hybrid. TEM showed that Pani and TiO2 were well incorporated and coated on the GN successfully. The shift of the peaks in the FTIR spectrum and XRD pattern of the Pani/TiO2/GN hybrid compared to their pure counterparts suggested that TiO2 and Pani had been perfectly coated on the GN, and there was a strong interaction among Pani, GN, and TiO2 particles. The electrochemical performance of the as-prepared Pani/TiO2/GN hybrid electrode showed a high specific capacitance of 403.2 F g?1 at a current density of 2 A g?1 and excellent cycling stability for up to 1000 cycles. This suggested that the effective incorporation of GN and TiO2 into Pani and the high surface area could simultaneously increase the electrochemical capacitance and cyclic stability of the Pani/TiO2/GN hybrid, leading to superior electrochemical performance.
Graphical abstract The electrochemical performance of as-prepared Pani/TiO2/GN hybrid electrode showed a high specific capacitance of 403.2 F g?-1 at a current density of 2 A g?-1 and excellent cycling stability for up to 1000 cycles. This suggested that the effective incorporation of GN and TiO2 into Pani and the high surface area could simultaneously increase the electrochemical capacitance and cycle stability of the Pani/TiO2/GN hybrid, leading to superior electrochemical performance.
Microwave-assisted extraction and dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry as a sensitive and efficient method was applied to extract and determine four biogenic amines (BAs) in Iranian Lighvan cheese samples. Carrez solutions were used for the sedimentation of proteins. Effective factors on the performance of microextraction were studied and optimized. The proposed method showed good linear ranges from 5 to 500 ng mL?1, with the coefficients of determination higher than 0.9929. Average recoveries were between 97 and 103%. Limits of detection for all analyzed BAs ranged from 5.9 to 14.0 ng g?1, and limits of quantitation ranged between 19.7 and 46.2 ng g?1. Compared with previous methods, the proposed method is simple, fast, accurate, and precise and gives low detection limits for investigating trace amounts of BAs in Iranian Lighvan cheese samples. The levels of four BAs were determined in five Lighvan cheese samples. Cadaverine was found as prevailing amine in the cheese samples. Putrescine, tyramine, and histamine were present at the second, third, and fourth highest levels, respectively. 相似文献
The search of eco-friendly technologies for nano-synthesis is significant to expand their applications in human welfare. Nowadays, various inorganic nanoparticles with beneficial features have been synthesized via physical, chemical, and biological means. Significant biological applications of silver nanoparticles include on-infectious microbes, target drug delivery, cancer and vector-borne disease control. Their syntheses have been tested from plant fungi, bacteria, and viruses. The bacterial mediated synthesis of silver, gold, zinc and other metal leads to a milestone in nano-medicines. Thus, in this review, we focus on the contribution of Bacilli in the synthesis of silver nanoparticles, the mechanism of action and their potential application in the welfare of human beings. 相似文献