The redox response of a modified carbon nanotube paste electrode of ferrocenedicarboxylic acid was investigated. Cyclic voltammetry,
differential pulse voltammetry, and chronoamperometry were used to investigate the electrochemical behavior of levodopa (LD)
at modified electrode. Under the optimized conditions (pH 5.0), the modified electrode showed high electrocatalytic activity
toward LD oxidation; the overpotential for the oxidation of LD was decreased by more than 190 mV, and the corresponding peak
current increased significantly. Differential pulse voltammetric peak currents of LD increased linearly with its concentrations
at the range of 0.04 to 1,100 μM, and the detection limit (3σ) was determined to be 12 nM. The diffusion coefficient ( D = 9.2 ×10 - 6cm2/s ) \left( {D = {9}.{2} \times {1}{0^{ - {6}}}{\hbox{c}}{{\hbox{m}}^2}/{\hbox{s}}} \right) and transfer coefficient (α = 0.49) of LD were also determined. Mixture of LD, NADH, and tryptophan (TRP) can be separated from one another by differential
pulse voltammetry. These conditions are sufficient to allow determination of LD, NADH, and TRP both individually and simultaneously.
The modified electrode showed good reproducibility, remarkable long-term stability, and especially good surface renewability
by simple mechanical polishing. The results showed that this electrode could be used as an electrochemical sensor for determination
of LD, NADH, and TRP in real samples such as urine and water samples. 相似文献
Linear alkylbenzene sulfonic acid (LAS) is a common substance used in the production of detergents in the world. This is an organic material with its structure made of benzene ring and double bonds. This structure creates many problems for the environment and humans. Up to now, various methods have been used to eliminate this pollution. A recently proposed method to remove this organic pollution is advanced oxidation processes. Photocatalytic degradation is also an efficient method to destroy organic structures. In this research, TiO2 nanoparticles are used as a photocatalyst that is activated by UV irradiation. TiO2 nanoparticles and pollution suspension are incorporated into the new design of the reactor with coaxial cylinders in which the inner cylinder rotates at a constant speed. The results show that in low concentrations of LAS, using TiO2 nanoparticles, the time to reach pollution elimination is reduced significantly. In higher concentrations of LAS, UV irradiation is more effective than activated TiO2 nanoparticles. 相似文献
Herein we report the successful implementation of the consecutive and simultaneous photodissociation with high (213 nm) and low (10.6 μm) energy photons (HiLoPD, high-low photodissociation) on ubiquitin in a quadrupole-Orbitrap mass spectrometer. Absorption of high-energy UV photon is dispersed over the whole protein and stimulates extensive C–Cα backbone fragmentation, whereas low-energy IR photon gradually increases the internal energy and thus preferentially dissociates the most labile amide (C–N) bonds. We noticed that simultaneous irradiation of UV and IR lasers on intact ubiquitin in a single MS/MS experiment provides a rich and well-balanced fragmentation array of a/x, b/y, and z ions. Moreover, secondary fragmentation from a/x and z ions leads to the formation of satellite side-chain ions (d, v, and w) and can help to distinguish isomeric residues in a protein. Implementation of high-low photodissociation in a high-resolution mass spectrometer may offer considerable benefits to promote a comprehensive portrait of protein characterization.
In this study, a simple, fast and environmentally friendly protocol has been proposed for the synthesis of layered double hydroxides (LDHs) and organomodified chiral LDHs under ultrasound irradiation as a green and fast tool for the first time. Novel chiral LDHs were synthesized in one step from the co-precipitation reaction of the Al(NO3)3·9H2O, Mg(NO3)2·6H2O and different bioactive N-trimellitylimido-l-amino acids in aqueous state. The obtained materials were studied by several methods such as Fourier transformed infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy techniques. The results of structural and morphological analyses showed the successful intercalation of chiral diacids within the interlayer of LDH clay. Thermal properties were investigated by thermogravimetry analysis. The results showed that there were four weight loss steps during the thermal decomposition. The amino acid containing N-trimellitylimido diacid created a chiral environment in the modified LDH that could be used in the chiral field. 相似文献
Several sample preparation methods were evaluated for determination of free carbon in boron carbide powders by quantitative X-ray diffraction method, including ultrasonication, wet ball milling and dry ball milling–wet mixing. Quantitation was based on measuring the integral peak area ratio of the diffraction lines of graphite (002) to boron carbide (012) in samples spiked with pure graphite. The dry milling–wet mixing method provided the best precision and accuracy in all the measurements as well as in determination of free carbon in a boron carbide reference material. There was a linear relationship between the integral peak area ratios and graphite added to boron carbide samples which were purified from their free carbon content. The method provided a low detection limit of 0.05 wt% free carbon. 相似文献
Two related proton‐transfer compounds, namely piperazine‐1,4‐diium 4‐oxo‐4H‐pyran‐2,6‐dicarboxylate monohydrate, C4H12N22+·C7H2O62−·H2O or (pipzH2)(cdo)·H2O, (I), and piperazine‐1,4‐diium bis(6‐carboxy‐4‐oxo‐4H‐pyran‐2‐carboxylate), C4H12N22+·2C7H3O6− or (pipzH2)(cdoH)2, (II), were obtained by the reaction of 4‐oxo‐4H‐pyran‐2,6‐dicarboxylic acid (chelidonic acid, cdoH2) and piperazine (pipz). In (I), both carboxyl H atoms of chelidonic acid have been transferred to piperazine to form the piperazine‐1,4‐diium ion. The structure is a monohydrate. All potential N—H donors are involved in N—H...O hydrogen bonds. The water molecule spans two anions via the 4‐oxo group of the pyranose ring and a carboxylate O atom. The hydrogen‐bonding motif is essentially two‐dimensional. The structure is a pseudomerohedral twin. In the asymmetric unit of (II), the anion consists of monodeprotonated chelidonic acid, while the piperazine‐1,4‐diium cation is located on an inversion centre. The single carboxyl H atom is disordered in two respects. Firstly, the disordered H atom is shared equally by both carboxylic acid groups. Secondly, the H atom is statistically disordered between two positions on either side of a centre of symmetry and is engaged in a very short hydrogen‐bonding interaction; the relevant O...O distances are 2.4549 (11) and 2.4395 (11) Å, and the O—H...O angles are 177 (6) and 177 (5)°, respectively. Further hydrogen bonding of the type N—H...O places the (pipzH2)2+ cations in pockets formed by the chains of (cdoH)− anions. In contrast with (I), the (pipzH2)2+ cations form hydrogen‐bonding arrays that are perpendicular to the anions, yielding a three‐dimensional hydrogen‐bonding motif. The structures of both (I) and (II) also feature π–π stacking interactions between aromatic rings. 相似文献
We report on a simple and sensitive method for the determination of tetracycline based on its reducing action on AgNO3 in alkaline medium containing ammonia and sodium hydroxide at 65°C. As a result of this reaction, silver nanoparticles (AgNPs) are formed. The AgNPs are stabilized in solution by adding poly(vinyl pyrrolidone) as a capping agent. The formed AgNPs were identified by surface plasmon resonance absorption spectrum and transmission electron microscopy image. The plasmon absorption peak at 411 nm is proportional to the concentration of tetracycline. The calibration graph is linear in the concentration range of 0.05–5.0 mg/L with a detection limit of 0.013 mg/L. This method was applied to the determination of tetracycline in pharmaceutical products. 相似文献