首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6303篇
  免费   266篇
  国内免费   56篇
化学   4681篇
晶体学   47篇
力学   235篇
综合类   2篇
数学   856篇
物理学   804篇
  2024年   12篇
  2023年   61篇
  2022年   324篇
  2021年   320篇
  2020年   218篇
  2019年   248篇
  2018年   237篇
  2017年   176篇
  2016年   310篇
  2015年   219篇
  2014年   229篇
  2013年   577篇
  2012年   384篇
  2011年   420篇
  2010年   257篇
  2009年   225篇
  2008年   282篇
  2007年   279篇
  2006年   233篇
  2005年   194篇
  2004年   181篇
  2003年   157篇
  2002年   153篇
  2001年   62篇
  2000年   72篇
  1999年   48篇
  1998年   39篇
  1997年   50篇
  1996年   45篇
  1995年   40篇
  1994年   44篇
  1993年   35篇
  1992年   33篇
  1991年   33篇
  1990年   46篇
  1989年   31篇
  1988年   27篇
  1987年   31篇
  1986年   32篇
  1985年   36篇
  1984年   21篇
  1983年   24篇
  1982年   28篇
  1981年   22篇
  1980年   14篇
  1979年   21篇
  1978年   19篇
  1977年   14篇
  1976年   12篇
  1975年   10篇
排序方式: 共有6625条查询结果,搜索用时 15 毫秒
141.
The goal of this work was to use the GC-MS technique to explore the chemical components of Artemisia giraldii Pamp essential oil (AgEo) and to uncover its antibacterial activity, specifically the antibacterial mechanism of this essential oil. There were a total of 63 chemical constituents in the AgEo, monoterpenes (10.2%) and sesquiterpenes (30.14%) were found to be the most common chemical components, with camphor (15.68%) coming in first, followed by germacrene D. (15.29%). AgEo displayed significant reducing power and good scavenging ability on hydroxyl radicals, 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radicals, and 2,2′-Azinobis-(3-ethylbenzthiazoline-6-sulphonate (ABTS) radicals, according to antioxidant data. The diameter of the inhibition zone (DIZ) of AgEo against S. aureus and E. coli was (14.00 ± 1.00) mm and (16.33 ± 1.53) mm, respectively; the minimum inhibitory concentration (MIC) of AgEo against E. coli and S. aureus was 3 μL/mL and 6 μL/mL, respectively; and the minimum bactericidal concentration (MBC) of AgEo against E. coli and S. aureus was 6 μL/mL and 12 μL/mL, respectively. The antibacterial curve revealed that 0.5MIC of AgEo may delay bacterial growth while 2MIC of AgEo could totally suppress bacterial growth. The relative conductivity, alkaline phosphatase (AKP) activity, and protein concentration of the bacterial suspension were all higher after the AgEo treatment than in the control group, and increased as the essential oil concentration was raised. In addition, the cell membrane ruptured and atrophy occurred. The study discovered that AgEo is high in active chemicals and can be used as an antibacterial agent against E. coli and S. aureus, which is critical for AgEo’s future research and development.  相似文献   
142.
This study aimed to evaluate the effects of peanut varieties cultivated in Morocco (Virginia and Valencia) and extraction methods (cold press, CP; Soxhlet, Sox and maceration, and Mac) on the fatty acid profile, phytosterol, and tocopherol contents, quality characteristics, and antioxidant potential of peanut seed oil. The DPPH method was used to determine the antioxidant activity of the oils. The results revealed that fatty acid content was slightly affected by the extraction technique. However, the CP method was shown to be an excellent approach for extracting oil with desirable quality features compared to the Sox and Mac methods. Furthermore, the peanut oil extracted via CP carried a higher amount of bioactive compounds and exhibited remarkable antioxidant activities. The findings also revealed higher oleic acid levels from the Virginia oil, ranging from 56.46% to 56.99%. Besides, a higher total phytosterol and tocopherol content and DPPH scavenging capacity were obtained from the Valencia oil. Analyzing the study, it can be inferred that extraction method and variety both affect the composition of the peanut oil’s bioactive compounds and antioxidant activity. This information is relevant for extracting peanut oil with a greater level of compounds of industrial interest.  相似文献   
143.
Herein we report the synthesis of a new class of compounds associating Keggin and Dawson-type Polyoxometalates (POMs) with a derivative of the anionic decahydro-closo-decaborate cluster [B10H10]2− through aminopropylsilyl ligand (APTES) acting as both a linker and a spacer between the two negatively charged species. Three new adducts were isolated and fully characterized by various NMR techniques and MALDI-TOF mass spectrometry, notably revealing the isolation of an unprecedented monofunctionalized SiW10 derivative stabilized through intramolecular H-H dihydrogen contacts. DFT as well as electrochemical studies allowed studying the electronic effect of grafting the decaborate cluster on the POM moiety and its consequences on the hydrogen evolution reaction (HER) properties.  相似文献   
144.
The liver is a crucial organ among body organs due to its wide functions, in particular, detoxification and metabolism. Exposure to detrimental chemicals or viral infections may provoke liver dysfunction and ultimately induce liver tissue damage. Finding natural substances for liver disease treatment to overcome the conventional treatments’ side effects has attracted the attention of researchers worldwide. Our current work was conducted to investigate the hepato-therapeutic activities of essential oil (EO) isolated from Tagetes patula flowers. EO was extracted using the hydro-distillation (HD) technique and its chemical composition was identified by GC/MS. Then, the hepatic treatment potential of extracted EO was evaluated in vivo against CCL4 in rats. HD of T. patula flowers yielded highly chemical constituents of EO along with significant antioxidant potential. A coherent molecular network was fashioned via the Global Natural Products Social Molecular Networking (GNPS) to visualize the essential components and revealed that the sesquiterpene (E)-β-caryophyllene was the most predominant volatile constituent which accounted for 24.1%. The treatment of CCL4 led to significant induced oxidative stress markers malonaldehyde, total protein, and non-protein sulfhydryl, as well as elevated serum aminotransferase, gamma-glutamyl transferase, alkaline phosphatase, and bilirubin. In addition, it disrupted the level of lipid profile. The post-treatment using T. patula EO succeeded in relieving all toxic effects of CCl4 and recuperating the histopathological signs induced by CCL4. Silymarin was used as a standard hepatoprotective agent. The obtained results demonstrated that the extracted EO exerted high protective activities against the toxicity of CCL4. Moreover, the T. patula flowers EO can be used as a natural remedy to relieve many contemporary liver diseases related to oxidative stress.  相似文献   
145.
Type 2 diabetes mellitus is considered to be a substantial socioeconomic burden worldwide on both patients and governments. Coumarins are biomolecules with a diversity of biological activities. The current investigation aimed to explore the ameliorative effects of cichoriin, which is a type of coumarin, on high-fat diet/streptozotocin (HFD/STZ)-induced diabetic rats. Methods: Rats were allocated into five groups. Group I was considered as the control group, while the other groups were HFD/STZ-induced diabetic rats. Group II was assigned as the diabetic control. Groups III and IV were treated with cichoriin (50 or 100 mg/kg, respectively). Group V received glibenclamide (5 mg/kg) (as a positive control). The blood glucose (BG), serum insulin, triglycerides (TG), total cholesterol (TC), total antioxidant capacity (TAC), catalase, hepatic superoxide dismutase (SOD) and content of malondialdehyde (MDA) were assessed. Histopathological and immunohistochemistry analysis of pancreatic tissue were performed. mRNA and protein expressions of GLUT4, AMPK, and PI3K were estimated. Results: Cichoriin treatment ameliorated HFD/STZ-induced diabetic conditions and mitigated the histopathological characteristics of the pancreas, as well as increasing pancreatic insulin expression. This decreased the levels of BG, TG, TC, and MDA and improved the TAC, catalase and SOD contents. Cichoriin demonstrated upregulation of mRNA and protein expressions of GLUT4, AMPK, and PI3K. The in silico binding of cichoriin with GLUT4, AMPK, and PI3K supported the possible current activities. Conclusion: Collectively, this work highlighted the potential role of cichoriin in mitigating HFD/STZ-induced diabetic conditions and showed it to be a valuable product.  相似文献   
146.
In this paper, the impact of dust deposition on solar photovoltaic (PV) panels was examined, using experimental and machine learning (ML) approaches for different sizes of dust pollutants. The experimental investigation was performed using five different sizes of dust pollutants with a deposition density of 33.48 g/m2 on the panel surface. It has been noted that the zero-resistance current of the PV panel is reduced by up to 49.01% due to the presence of small-size particles and 15.68% for large-size (ranging from 600 µ to 850 µ). In addition, a significant reduction of nearly 40% in sunlight penetration into the PV panel surface was observed due to the deposition of a smaller size of dust pollutants compared to the larger size. Subsequently, different ML regression models, namely support vector machine (SVMR), multiple linear (MLR) and Gaussian (GR), were considered and compared to predict the output power of solar PV panels under the varied size of dust deposition. The outcomes of the ML approach showed that the SVMR algorithms provide optimal performance with MAE, MSE and R2 values of 0.1589, 0.0328 and 0.9919, respectively; while GR had the worst performance. The predicted output power values are in good agreement with the experimental values, showing that the proposed ML approaches are suitable for predicting the output power in any harsh and dusty environment.  相似文献   
147.
Turmeric spice contains curcuminoids, which are polyphenolic compounds found in the Curcuma longa plant’s rhizome. This class of molecules includes curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Using prostate cancer cell lines PC3, LNCaP, DU145, and C42B, we show that curcuminoids inhibit cell proliferation (measured by MTT assay) and induce apoptosis-like cell death (measured by DNA/histone ELISA). A copper chelator (neocuproine) and reactive oxygen species scavengers (thiourea for hydroxyl radical, superoxide dismutase for superoxide anion, and catalase for hydrogen peroxide) significantly inhibit this reaction, thus demonstrating that intracellular copper reacts with curcuminoids in cancer cells to cause DNA damage via ROS generation. We further show that copper-supplemented media sensitize normal breast epithelial cells (MCF-10A) to curcumin-mediated growth inhibition, as determined by decreased cell proliferation. Copper supplementation results in increased expression of copper transporters CTR1 and ATP7A in MCF-10A cells, which is attenuated by the addition of curcumin in the medium. We propose that the copper-mediated, ROS-induced mechanism of selective cell death of cancer cells may in part explain the anticancer effects of curcuminoids.  相似文献   
148.
Industrial-based application of supercritical CO2 (SCCO2) has emerged as a promising technology in numerous scientific fields due to offering brilliant advantages, such as simplicity of application, eco-friendliness, and high performance. Loxoprofen sodium (chemical formula C15H18O3) is known as an efficient nonsteroidal anti-inflammatory drug (NSAID), which has been long propounded as an effective alleviator for various painful disorders like musculoskeletal conditions. Although experimental research plays an important role in obtaining drug solubility in SCCO2, the emergence of operational disadvantages such as high cost and long-time process duration has motivated the researchers to develop mathematical models based on artificial intelligence (AI) to predict this important parameter. Three distinct models have been used on the data in this work, all of which were based on decision trees: K-nearest neighbors (KNN), NU support vector machine (NU-SVR), and Gaussian process regression (GPR). The data set has two input characteristics, P (pressure) and T (temperature), and a single output, Y = solubility. After implementing and fine-tuning to the hyperparameters of these ensemble models, their performance has been evaluated using a variety of measures. The R-squared scores of all three models are greater than 0.9, however, the RMSE error rates are 1.879 × 10−4, 7.814 × 10−5, and 1.664 × 10−4 for the KNN, NU-SVR, and GPR models, respectively. MAE metrics of 1.116 × 10−4, 6.197 × 10−5, and 8.777 × 10−5errors were also discovered for the KNN, NU-SVR, and GPR models, respectively. A study was also carried out to determine the best quantity of solubility, which can be referred to as the (x1 = 40.0, x2 = 338.0, Y = 1.27 × 10−3) vector.  相似文献   
149.
The total phenolic content (TPC) from Cassia javanica L. petals were extracted using ethanolic solvent extraction at concentrations ranging from 0 to 90% and an SCF-CO2 co-solvent at various pressures. Ultrasound-assisted extraction parameters were optimized using response surface methodology (RSM). Antioxidant and anticancer properties of total phenols were assessed. An SCF-CO2 co-solvent extract was nano-encapsulated and applied to sunflower oil without the addition of an antioxidant. The results indicated that the best treatment for retaining TPC and total flavonoids content (TFC) was SCF-CO2 co-solvent followed by the ultrasound and ethanolic extraction procedures. Additionally, the best antioxidant activity by β-carotene/linoleic acid and DPPH free radical-scavenging test systems was observed by SCF-CO2 co-solvent then ultrasound and ethanolic extraction methods. SCF-CO2 co-solvent recorded the highest inhibition % for PC3 (76.20%) and MCF7 (98.70%) and the lowest IC50 value for PC3 (145 µ/mL) and MCF7 (96 µ/mL). It was discovered that fortifying sunflower oil with SCF-CO2 co-solvent nanoparticles had a beneficial effect on free fatty acids and peroxide levels. The SCF-CO2 method was finally found to be superior and could be used in large-scale processing.  相似文献   
150.
In this study, three oil-in-water nanoemulsions were tested in two stages: In the first stage, three levels (on the substrate dry matter (DM)), namely 3%, 6%, and 9%, of three different oils, olive oil (OO), corn oil (CO), and linseed oil (LO), in raw and nanoemulsified (N) forms were used separately in three consecutive rumen batch cultures trials. The second stage, which was based on the first stage’s results, consisted of a batch culture trial that compared the raw and nanoemulsified (N) forms of all three oils together, provided at 3% of the DM. In the first stage, NOO, NCO, and NLO preserved higher unsaturated fatty acid (UFA) and less saturated fatty acid (SFA) compared to OO, CO, and LO, respectively; noticeably, NCO had UFA:SFA = 1.01, 1.16, and 1.34 compared to CO, which had UFA:SFA = 0.66, 0.69, and 0.72 when supplemented at 3%, 6%, 9% of DM, respectively. In the second stage, UFA:SFA = 1.04, 1.12, and 1.07 for NOO, NCO, NLO, as compared to UFA:SFA = 0.69, 0.68, and 0.72 for OO, CO, and LO supplemented at 3% of DM. In conclusion, oil-in-water nanoemulsions showed an ability to decrease the transformation of UFA to SFA in the biohydrogenation environment without affecting the rumen microorganisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号