首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   834篇
  免费   34篇
  国内免费   9篇
化学   627篇
晶体学   8篇
力学   20篇
数学   75篇
物理学   147篇
  2024年   1篇
  2023年   15篇
  2022年   67篇
  2021年   78篇
  2020年   36篇
  2019年   45篇
  2018年   39篇
  2017年   18篇
  2016年   50篇
  2015年   32篇
  2014年   44篇
  2013年   67篇
  2012年   70篇
  2011年   58篇
  2010年   40篇
  2009年   33篇
  2008年   38篇
  2007年   31篇
  2006年   21篇
  2005年   17篇
  2004年   14篇
  2003年   11篇
  2002年   6篇
  2001年   4篇
  2000年   5篇
  1999年   2篇
  1998年   5篇
  1997年   5篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
排序方式: 共有877条查询结果,搜索用时 15 毫秒
11.
The structural, electronic and optical properties of tungsten-doped TiO2 have been investigated using density functional theory with plane wave basis sets and ultrasoft pseuodopotential. Substitutional W doping at Ti sites create W 5d states just below the conduction band minimum while interstitial W doping gives isolated W 5d states in the middle of forbidden region. Averaged bond lengths show that W doping at Ti sites produce minimum structural distortion as compared to the interstitial W-doped TiO2. Substitutional W-doped TiO2 has better visible light absorption compared to interstitial W-doped TiO2 and has stable configuration which provide reasonable explanation for the experimental findings. Tungsten doping in TiO2 with different doping concentrations is investigated as an enabling concept for enhancing the visible light absorption. Optical properties show that optimal W doping concentration would improve the visible light absorption. 2.08% W doping concentration gives strong visible and ultraviolet light absorption among all doped models found consistent with experiments.  相似文献   
12.
Cyclic [n]paraphenyleneacetylenes ([n]CPPAs) are potentially useful compounds for molecular electronics. In this article, a homodesmotic reaction scheme coupled with density functional theory has been used to estimate theoretically strain energies and heats of formation of [n]CPPAs. Calculations have been done for a series of [n]CPPAs, containing up to ten phenylacetylene units. Strain energies of [n]CPPAs decrease, while heats of formation increase steadily with the increase in the number of phenylacetylene units using homodesmotic reaction schemes. B3LYP and mPW1PW91 functionals have been used with the Pople basis set 6-31G* to analyze the trends. The results are sensitive to the scheme of homodesmotic reaction chosen, thereby necessitating careful chemical consideration before spending considerable computational resources for higher [n]CPPAs not considered here. Computational estimates for the ring diameter of [n]CPPAs and absolute entropy have also been obtained here. The HOMO-LUMO gaps of the belt shaped [n]CPPAs show an odd–even difference. In addition, the HOMOs of the [3]CPPA, [5]CPPA, [7]CPPA and [9]CPPA are doubly degenerate.  相似文献   
13.
Convergence dynamics of Hopfield-type neural networks subjected to almost periodic external stimuli are investigated. In this article, we assume that the network parameters vary almost periodically with time and we incorporate variable delays in the processing part of the network architectures. By employing Halanay inequalities, we obtain delay independent sufficient conditions for the networks to converge exponentially toward encoded patterns associated with the external stimuli. The networks are guaranteed to have exponentially hetero-associative stable encoding of the external stimuli.  相似文献   
14.
I studied the ferrimagnetic Ising model with nearest neighbour interactions for a square lattice and simple cubic one, using mean field theory. The free energy of a mixed spin Ising ferrimagnetic model was calculated from a mean field approximation of the Hamiltonian. By minimizing the free energy, I obtained the equilibrium magnetizations and the compensation temperatures. Clear indications of the single-ion anisotropies on the compensation points of the mixed spin-3/2 and spin-5/2 ferrimagnetic lattices are found. Some interesting behaviors of these systems are obtained depending not only on the values of magnetic anisotropies for both sublattice sites but also on the lattice structure. The longitudinal magnetic fields dependence of the spin compensation temperature is the main focus of research. The possibility of many compensation temperatures is indicated.  相似文献   
15.
We report here the evolution of zinc based high purity phases with novel morphologies such as Zn3N2 hollow structures, ZnO nanowires and nanopowders, as well as metallic Zn layered hexagonal microparticles at progressively increased reaction temperature of 600 °C, 700 °C, 800 °C under NH3 gas atmosphere using Zn powder precursor and keeping all other experimental parameters unchanged. Growth mechanism for Zn3N2 obtained by nitridation, ZnO by oxidation and Zn microparticles via thermal evaporation & condensation process are discussed briefly. The as-synthesized products were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM). Photoluminescence (PL) studies have revealed very interesting and infrequently observed emission bands at 378 and 661 nm for Zn3N2, 359 and 396 nm for ZnO as well as 389 nm for Zn polyhedral microparticles.  相似文献   
16.
We report the variation of yield and quality of carbon nanotubes (CNTs) grown by chemical vapor deposition (CVD) of methane on iron oxide-MgO at 900-1000 °C for 1-60 min. The catalyst was prepared by impregnation of MgO powder with iron nitrate, dried, and calcined at 300 °C. As calcined and unreduced catalyst in quartz reactor was brought to the synthesis temperature in helium flow in a few minutes, and then the flow was switched to methane. The iron oxide was reduced to iron nanoparticles in methane, while the CNTs were growing.TEM micrographs, in accordance with Raman RBM peaks, indicate the formation of mostly single wall carbon nanotubes of about 1.0 nm size. High quality CNTs with IG/ID Raman peak ratio of 14.5 are formed in the first minute of CNTs synthesis with the highest rate. Both the rate and quality of CNTs degrades with increasing CNTs synthesis time. Also CNTs quality sharply declines with temperature in the range of 900-1000 °C, while the CNTs yield passes through a maximum at 950 °C. About the same CNTs lengths are formed for the whole range of the synthesis times. A model of continuous emergence of iron nanoparticle seeds for CNTs synthesis may explain the data. The data can also provide information for continuous production of CNTs in a fluidized bed reactor.  相似文献   
17.
Cesium dihydrogen phosphate (CDP) nanoparticles were synthesized using the surfactants cetyltrimethyl ammonium bromide (CTAB), polyoxyethylene-polyoxypropylene (F-68) and (F-68:CTAB) with molar ratio 0.06. The samples conductivity such as CDPCTAB, CDPF-68 and CDP(F-68:CTAB)0.06 was studied by impedance spectroscopy in the frequency range 0.01 Hz to 1 MHz. The Nyquist plots were drawn at different temperatures of 210, 230 and 260 °C, which are defined below transition, phase transition and above transition, respectively. The measured conductivities obey the Arrhenius relation. The influence of surfactants on conductivity are more significant at higher temperature due to grain boundary. The conductivity of CDPCTAB increased slightly with increasing temperature to 260 °C, whereas the conductivity of other samples decreased with increasing temperature over 230 °C. The results indicated that the conductivities increase in the order of CDPCTAB>CDP(F-68:CTAB)0.06>CDPF-68. These are in accordance to the ion exchange capacities of the samples that the surfactant shows a direct influence on the samples proton mobility. It is found that the conductivity of CsH2PO4 is influenced by surfactant type.  相似文献   
18.
Terahertz detection using the free-carrier absorption requires a small internal work function of the order of a few millielectron volts. A threshold frequency of 3.2 THz (93 microm or approximately 13 meV work function) is demonstrated by using a 1 x 10(18) cm(-3) Si-doped GaAs emitter and an undoped Al(0.04)Ga(0.96)As barrier structure. The peak responsivity of 6.5 A/W, detectivity of 5.5 x 10(8) Jones, and quantum efficiency of 19% were obtained at 7.1 THz under a bias field of 0.7 kV/cm at 6 K, while the detector spectral response range spans from 3.2 to 30 THz.  相似文献   
19.
The results of a magnetic resonance imaging (MRI) investigation concerning the effects of an aluminum honeycomb sandwich panel on the B1 and B0 fields and on subsequent image quality are presented. Although the sandwich panel structure, representative of an aircraft composite material, distorts B0 and attenuates B1, distortion-free imaging is possible using single point (constant time) imaging techniques. A new expression is derived for the error caused by gradient field distortion due to the heterogeneous magnetic susceptibility within a sample and this error is shown not to cause geometric distortion in the image. The origin of the B0 distortion in the sample under investigation was also examined. The graphite-epoxy 'skin' of the panel is the principal source of the B0 distortion. Successful imaging of these structures sets the stage for the development of methods for detecting moisture ingress and degradation within composite sandwich structures.  相似文献   
20.
In this paper, a new channel drop filter in two dimensional photonic crystals with mirror cavities is proposed. In the structure, three cavities are used. One is used for a resonant tunneling-based channel drop filter. The others are used to realize reflection feedback in the bus waveguide, which consists of a point defect micro-cavity side-coupled to a waveguide. The simulation results by using the finite-difference time-domain method conclude 98% output efficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号