首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3373篇
  免费   133篇
  国内免费   83篇
化学   2469篇
晶体学   20篇
力学   167篇
数学   398篇
物理学   535篇
  2024年   20篇
  2023年   24篇
  2022年   101篇
  2021年   140篇
  2020年   150篇
  2019年   158篇
  2018年   190篇
  2017年   144篇
  2016年   269篇
  2015年   159篇
  2014年   218篇
  2013年   417篇
  2012年   270篇
  2011年   254篇
  2010年   195篇
  2009年   160篇
  2008年   179篇
  2007年   129篇
  2006年   74篇
  2005年   65篇
  2004年   59篇
  2003年   46篇
  2002年   35篇
  2001年   15篇
  2000年   16篇
  1999年   15篇
  1998年   13篇
  1997年   3篇
  1996年   7篇
  1995年   6篇
  1994年   3篇
  1993年   4篇
  1992年   6篇
  1991年   5篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   5篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1977年   3篇
  1975年   1篇
  1963年   1篇
排序方式: 共有3589条查询结果,搜索用时 15 毫秒
81.

The dynamic characteristic of bone is its ability to remodel itself through mechanobiological responses. Bone regeneration is triggered by mechanical cues from physiological activities that generate structural strain and cause bone marrow movement. This phenomenon is crucial for bone scaffold when implanted in the cancellous bone as host tissue. Often, the fluid movement of bone scaffold and cancellous bone is studied separately, which does not represent the actual environment once implanted. In the present study, the fluid flow analysis properties of bone scaffold integrated into the cancellous bone at different skeletal sites are investigated. Three types of porous bone scaffolds categorized based on pore size configurations: 1 mm, 0.8 mm and hybrid (0.8 mm interlaced with 0.5 mm) were used. Three different skeletal sites of femoral bone were selected: neck, lateral condyle and medial condyle. Computational fluid dynamics was utilized to analyze the fluid flow properties of bone scaffold integrated cancellous bone. The results of this study reveal that the localization and maximum value of shear stress in an independent bone scaffold are significantly different compared to the bone scaffold integrated with cancellous bone by about 160% to 448% percentage difference. Low shear stress and high permeability were found across models that have higher Tb.Sp (trabecular separation). Specimen C and femoral lateral condyle showed the highest permeability in their respective category.

  相似文献   
82.
Perovskite-type barium strontium titanate(BST) thin films and powders with nanocrystalline and mesoporous structure were prepared by a straightforward particulate sol-gel route at room temperature. The prepared sol had a narrow particle size distribution of about 20 nm. X-ray diffraction(XRD) revealed that phase composition and preferable orientation growth of BST depended upon the annealing temperature. Transmission electron microscope(TEM) images showed that the crystallite size of the powders decreased w...  相似文献   
83.
84.
In the present study the effects of surface tension on the growth and collapse stages of cavitation bubbles are studied individually for both spherical and nonspherical bubbles. The Gilmore equation is used to simulate the spherical bubble dynamics by considering mass diffusion and heat transfer. For the collapse stage near a rigid boundary, the Navier–Stokes and energy equations are used to simulate the flow domain, and the VOF method is adopted to track the interface between the gas and the liquid phases. Simulations are divided into two cases. In the first case, the collapse stage alone is considered in both spherical and nonspherical situations with different conditions of bubble radius and surface tension. According to the results, surface tension has no significant effects on the flow pattern and collapse rate. In the second case, both the growth and collapse stages of bubbles with different initial radii and surface tensions are considered. In this case surface tension affects the growth stage considerably and, as a result, the jet velocity and collapse time decrease with increasing surface tension coefficient. This effect is more significant for bubbles with smaller radii.  相似文献   
85.
Two-phase CFD calculations, using a Lagrangian model and commercial code Fluent 6.2.16, were employed to calculate the gas and droplet flows and film cooling effectiveness with and without mist on a flat plate. Two different three dimensional geometries are generated and the effects of the geometrical shape, size of droplets, mist concentration in the coolant flow and temperature of mainstream flow for different blowing ratios are studied. A cylindrical and laterally diffused hole with a streamwise angle of 30° and spanwise angle of 0° are used. The diameter of film cooling (d) hole, and the hole length to diameter ratio (L/d) for both of geometries are 10 mm and 4, respectively. Also the blowing ratio ranges from 1.0 to 2.0, and the mainstream Reynolds number based on the mainstream velocity and hole diameter (Re d) is 6,219. The results are shown for different droplets diameters (1–10 μm), concentrations (1–5%) and mainstream temperatures (350–500 K). The centreline effectiveness and distribution of effectiveness on the surface of cooling wall are presented.  相似文献   
86.
In this paper, a necessary condition is first presented for the existence of limit cycles in nonlinear systems, then four theorems are presented for the stability, instability, and semistabilities of limit cycles in second order nonlinear systems. Necessary and sufficient conditions are given in terms of the signs of first and second derivatives of a continuously differentiable positive function at the vicinity of the limit cycle. Two examples considering nonlinear systems with familiar limit cycles are presented to illustrate the theorems.  相似文献   
87.
This paper deals with an analytical approach of the buckling behavior of a functionally graded circular cylindrical shell under axial pressure with external axial and circumferential stiffeners. The shell properties are assumed to vary continuously through the thickness direction. Fundamental relations and equilibrium and stability equations are derived using the third-order shear deformation theory. The resulting equations are employed to obtain the closed-form solution for the critical buckling loads. A simply supported boundary condition is considered for both edges of the shell. The comparison of the results of this study with those in the literature validates the present analysis. The effects of material composition (volume fraction exponent), of the number of stiffeners and of shell geometry parameters on the characteristics of the critical buckling load are described. The analytical results are compared and validated using the finite-element method. The results show that the inhomogeneity parameter, the geometry of the shell and the number of stiffeners considerably affect the critical buckling loads.  相似文献   
88.
This study deals with the problem of controlling a class of uncertain nonlinear systems in the presence of external disturbances. To achieve this goal, a new Optimal Type-2 Fuzzy Sliding Mode Controller (OT2FSMC) is introduced. In the proposed controller, a novel heuristic algorithm, namely particle swarm optimization with random inertia weight (RNW–PSO), is employed. To achieve an optimal performance, the parameters of the proposed controller as well as the input and output membership functions are optimized simultaneously by RNW–PSO. The globally asymptotic stability of the closed-loop system is mathematically proved. Finally, this method of control is applied to the inverted pendulum system as a case study. Simulation results show the system performance is desirable.  相似文献   
89.
The homogenized response of metal matrix composites(MMC) is studied using strain gradient plasticity.The material model employed is a rate independent formulation of energetic strain gradient plasticity at the micro scale and conventional rate independent plasticity at the macro scale. Free energy inside the micro structure is included due to the elastic strains and plastic strain gradients. A unit cell containing a circular elastic fiber is analyzed under macroscopic simple shear in addition to transverse and longitudinal loading. The analyses are carried out under generalized plane strain condition. Micro-macro homogenization is performed observing the Hill-Mandel energy condition,and overall loading is considered such that the homogenized higher order terms vanish. The results highlight the intrinsic size-effects as well as the effect of fiber volume fraction on the overall response curves, plastic strain distributions and homogenized yield surfaces under different loading conditions. It is concluded that composites with smaller reinforcement size have larger initial yield surfaces and furthermore,they exhibit more kinematic hardening.  相似文献   
90.
Let \((R, \mathfrak {m})\) be a local ring and M a finitely generated R-module. It is shown that if M is relative Cohen–Macaulay with respect to an ideal \(\mathfrak {a}\) of R, then \({\text {Ann}}_R(H_{\mathfrak {a}}^{{\text {cd}}(\mathfrak {a}, M)}(M))={\text {Ann}}_RM/L={\text {Ann}}_RM\) and \({\text {Ass}}_R (R/{\text {Ann}}_RM)\subseteq \{\mathfrak {p}\in {\text {Ass}}_R M|\,\mathrm{cd}(\mathfrak {a}, R/\mathfrak {p})={\text {cd}}(\mathfrak {a}, M)\},\) where L is the largest submodule of M such that \(\mathrm{cd}(\mathfrak {a}, L)< \mathrm{cd}(\mathfrak {a}, M)\). We also show that if \(H^{\dim M}_{\mathfrak {a}}(M)=0\), then \({\text {Att}}_R(H^{\dim M-1}_{\mathfrak {a}}(M))= \{\mathfrak {p}\in {\text {Supp}}(M)|\mathrm{cd}(\mathfrak {a}, R/\mathfrak {p})=\dim M-1\},\) and so the attached primes of \(H^{\dim M-1}_{\mathfrak {a}}(M)\) depend only on \({\text {Supp}}(M)\). Finally, we prove that if M is an arbitrary module (not necessarily finitely generated) over a Noetherian ring R with \(\mathrm{cd}(\mathfrak {a}, M)=\mathrm{cd}(\mathfrak {a}, R/{\text {Ann}}_RM)\), then \({\text {Att}}_R(H^{\mathrm{cd}(\mathfrak {a}, M)}_{\mathfrak {a}}(M))\subseteq \{\mathfrak {p}\in {\text {V}}({\text {Ann}}_RM)|\,\mathrm{cd}(\mathfrak {a}, R/\mathfrak {p})=\mathrm{cd}(\mathfrak {a}, M)\}.\) As a consequence of this, it is shown that if \(\dim M=\dim R\), then \({\text {Att}}_R(H^{\dim M}_{\mathfrak {a}}(M))\subseteq \{\mathfrak {p}\in {\text {Ass}}_R M|\mathrm{cd}(\mathfrak {a}, R/\mathfrak {p})=\dim M\}\).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号