首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   265篇
  免费   8篇
化学   195篇
晶体学   3篇
力学   7篇
数学   7篇
物理学   61篇
  2022年   9篇
  2021年   6篇
  2020年   3篇
  2019年   4篇
  2018年   6篇
  2017年   2篇
  2016年   5篇
  2015年   5篇
  2014年   6篇
  2013年   12篇
  2012年   8篇
  2011年   20篇
  2010年   10篇
  2009年   7篇
  2008年   28篇
  2007年   9篇
  2006年   14篇
  2005年   20篇
  2004年   10篇
  2003年   14篇
  2002年   13篇
  2001年   5篇
  2000年   9篇
  1999年   4篇
  1998年   1篇
  1997年   5篇
  1996年   6篇
  1995年   1篇
  1994年   4篇
  1993年   9篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1984年   1篇
  1982年   1篇
  1925年   2篇
排序方式: 共有273条查询结果,搜索用时 31 毫秒
161.
We report a systematic comparison of the electrostatic contributions to the free energy of solvation from three different kinds of quantum mechanical self-consistent reaction field (SCRF) methods. We also compare the liquid-phase dipole moments as a measure of the solute's response to the reaction field of the solvent. In particular, we compare these quantities for the generalized Born model as implemented in the SM5.42R method, the multipolar expansion model developed at Nancy, and the MST version of the polarizable continuum model. All calculations are carried out at the HF/6-31G(d) level. The effects of various choices of solute cavities and representations of the charge density are examined. The test set consists of 18 molecules containing prototypical polar groups, and three different values of the dielectric permittivity are considered.  相似文献   
162.
The structure of a new form of duplex DNA, the antiparallel Hoogsteen duplex, is studied in polyd(AT) sequences by means of state-of-the-art molecular dynamics simulations in aqueous solution. The structure, which was found to be stable in all of the simulations, has many similarities with the standard Watson-Crick duplex in terms of general structure, flexibility, and molecular recognition patterns. Accurate MM-PB/SA (and MM-GB/SA) analysis shows that the new structure has an effective energy similar to that of the B-type duplex, while it is slightly disfavored by intramolecular entropic considerations. Overall, MD simulations strongly suggest that the antiparallel Hoogsteen duplex is an accessible structure for a polyd(AT) sequence, which might compete under proper experimental conditions with normal B-DNA. MD simulations also suggest that chimeras containing Watson-Crick duplex and Hoogsteen antiparallel helices might coexist in a common structure, but with the differential characteristics of both type of structures preserved.  相似文献   
163.
The non-linear properties of iron based magneto-rheological (MR) fluids are investigated at low magnetic field strengths (0–1.7 kA/m) and different gap thickness (0–500 m) in a plate-plate configuration. Single-width chain models qualitatively predict the low-shear flow behavior when plotting the field-specific viscosity, F, as a function of the Mason number, Mn: a slope close to –1 is observed in log-log representations. Wall depletion effects are observed when the suspensions are sheared under the presence of low external magnetic fields applied and/or large gap distances. These results are correlated to frictional yield stress measurements and chain length distribution calculations in the presence of the external magnetic field. Finally, an equivalent slip layer thickness is calculated using the method of Yoshimura and Prudhomme.  相似文献   
164.
B3Ng3+ (Ng: He—Rn) complexes are characterized by quantum chemical MP2 and CCSD(T) calculations.  相似文献   
165.
166.
Common “glanded” (Gd) cottonseeds contain the toxic compound gossypol that restricts human consumption of the derived products. The “glandless” (Gl) cottonseeds of a new cotton variety, in contrast, show a trace gossypol content, indicating the great potential of cottonseed for agro-food applications. This work comparatively evaluated the chemical composition and thermogravimetric behaviors of the two types of cottonseed kernels. In contrast to the high gossypol content (3.75 g kg−1) observed in Gd kernels, the gossypol level detected in Gl kernels was only 0.06 g kg−1, meeting the FDA’s criteria as human food. While the gossypol gland dots in Gd kernels were visually observed, scanning electron microcopy was not able to distinguish the microstructural difference between ground Gd and Gl samples. Chemical analysis and Fourier transform infrared (FTIR) spectroscopy showed that Gl kernels and Gd kernels had similar chemical components and mineral contents, but the former was slightly higher in protein, starch, and phosphorus contents. Thermogravimetric (TG) processes of both kernels and their residues after hexane and ethanol extraction were based on three stages of drying, de-volatilization, and char formation. TG-FTIR analysis revealed apparent spectral differences between Gd and Gl samples, as well as between raw and extracted cottonseed kernel samples, indicating that some components in Gd kernels were more susceptible to thermal decomposition than Gl kernels. The TG and TG-FTIR observations suggested that the Gl kernels could be heat treated (e.g., frying and roasting) at an optimal temperature of 140–150 °C for food applications. On the other hand, optimal pyrolysis temperatures would be much higher (350–500 °C) for Gd cottonseed and its defatted residues for non-food bio-oil and biochar production. The findings from this research enhance the potential utilization of Gd and Gl cottonseed kernels for food applications.  相似文献   
167.
Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, is one of the most devastating infectious agents in the world. Chemical-genetic characterization through in vitro evolution combined with whole genome sequencing analysis was used identify novel drug targets and drug resistance genes in Mtb associated with its intracellular growth in human macrophages. We performed a genome analysis of 53 Mtb mutants resistant to 15 different hit compounds. We found nonsynonymous mutations/indels in 30 genes that may be associated with drug resistance acquisitions. Beyond confirming previously identified drug resistance mechanisms such as rpoB and lead targets reported in novel anti-tuberculosis drug screenings such as mmpL3, ethA, and mbtA, we have discovered several unrecognized candidate drug targets including prrB. The exploration of the Mtb chemical mutant genomes could help novel drug discovery and the structural biology of compounds and associated mechanisms of action relevant to tuberculosis treatment.  相似文献   
168.
Glycan-based electrochemical biosensors are emerging as analytical tools for determining multiple molecular targets relevant to diagnosing infectious diseases and detecting cancer biomarkers. These biosensors allow for the detection of target analytes at ultra-low concentrations, which is mandatory for early disease diagnosis. Nanostructure-decorated platforms have been demonstrated to enhance the analytical performance of electrochemical biosensors. In addition, glycans anchored to electrode platforms as bioreceptors exhibit high specificity toward biomarker detection. Both attributes offer a synergy that allows ultrasensitive detection of molecular targets of clinical interest. In this context, we review recent advances in electrochemical glycobiosensors for detecting infectious diseases and cancer biomarkers focused on colorectal cancer. We also describe general aspects of structural glycobiology, definitions, and classification of electrochemical biosensors and discuss relevant works on electrochemical glycobiosensors in the last ten years. Finally, we summarize the advances in electrochemical glycobiosensors and comment on some challenges and limitations needed to advance toward real clinical applications of these devices.  相似文献   
169.
Extensive (more than 90 microseconds) molecular dynamics simulations complemented with ion-mobility mass spectrometry experiments have been used to characterize the conformational ensemble of DNA triplexes in the gas phase. Our results suggest that the ensemble of DNA triplex structures in the gas phase is well-defined over the experimental time scale, with the three strands tightly bound, and for the most abundant charge states it samples conformations only slightly more compact than the solution structure. The degree of structural alteration is however very significant, mimicking that found in duplex and much larger than that suggested for G-quadruplexes. Our data strongly supports that the gas phase triplex maintains an excellent memory of the solution structure, well-preserved helicity, and a significant number of native contacts. Once again, a linear, flexible, and charged polymer as DNA surprises us for its ability to retain three-dimensional structure in the absence of solvent. Results argue against the generally assumed roles of the different physical interactions (solvent screening of phosphate repulsion, hydrophobic effect, and solvation of accessible polar groups) in modulating the stability of DNA structures.  相似文献   
170.
A detailed and complete structural knowledge of the interactome is one of the grand challenges in Biology, and a variety of computational docking approaches have been developed to complement experimental efforts and help in the characterization of protein-protein interactions. Among the different docking scoring methods, those based on physicochemical considerations can give the maximum accuracy at the atomic level, but they are usually computationally demanding and necessarily noisy when implemented in rigid-body approaches. Coarser-grained knowledge-based potentials are less sensitive to details of atomic arrangements, thus providing an efficient alternative for scoring of rigid-body docking poses. In this study, we have extracted new statistical potentials from intermolecular pairs of exposed residues in known complex structures, which were then used to score protein-protein docking poses. The new method, called SIPPER (scoring by intermolecular pairwise propensities of exposed residues), combines the value of residue desolvation based on solvent-exposed area with the propensity-based contribution of intermolecular residue pairs. This new scoring function found a near-native orientation within the top 10 predictions in nearly one-third of the cases of a standard docking benchmark and proved to be also useful as a filtering step, drastically reducing the number of docking candidates needed by energy-based methods like pyDock.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号