首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   5篇
化学   118篇
晶体学   1篇
力学   1篇
数学   2篇
物理学   7篇
  2022年   1篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   7篇
  2011年   10篇
  2010年   6篇
  2009年   4篇
  2008年   4篇
  2007年   9篇
  2006年   7篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
  2001年   8篇
  2000年   4篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1992年   4篇
  1991年   2篇
  1989年   3篇
  1988年   3篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
  1966年   2篇
  1965年   1篇
  1963年   1篇
排序方式: 共有129条查询结果,搜索用时 15 毫秒
101.
A series of new diethylenetriaminepentaacetic acid (DTPA)-bisamide chelators has been prepared and characterized for application as zinc sensors. We have designed and synthesized (GdL(a))(2-), which contains a DTPA-bisamide moiety. The R(1) relaxivity of (GdL(a))(2-) solution decreased monotonically on the addition of Zn(2+). Moreover, (GdL(a))(2-) showed high selectivity for Zn(2+) against Ca(2+) and Mg(2+). We also measured the UV-visible spectra and the coldspray ionization (CSI) MS spectra and concluded that the 1-to-1 Zn(2+) complex of (GdL(a))(2-) is stable at higher concentrations of Zn(2+). These complexes should provide the basis for creating a superior Zn(2+)-sensitive MRI contrast agent and are excellent candidates for incorporation into sensors designed for selective detection of Zn(2+) in biological applications.  相似文献   
102.
From the leaves of the African Apocynacea Pleiocarpa talbotii Wernham a novel indole alkaloid, talbotine, C21H24N2O4, has been isolated. Talbotine ( 1 ) contains a secondary N(b)-atom and a cyclic hemiacetal group. Catalytic hydrogenation leads to 19, 20-dihydrotalbotine ( 6 ), hydrogenation in the presence of formaldehyde gives N(b)-methyl-19, 20-dihydrotalbotine ( 8 ). In the presence of sodium methoxide and methanol, 1 is converted into the lactone 12 and the methyl ester 13 . In these reactions carbon 17 is lost as formic acid. These data, together with the analyses of the NMR. spectra of talbotine and its derivatives as well as the interpretation of the various types of the mass spectral fragmentation, lead to formula 1 for the alkaloid. Dehydrogenation of talbotine methyl ether ( 3 ) with palladium and maleic acid gives the ß-carboline derivative 26 . The N(b)-methiodide of the latter is converted into N(b)-methyl-talbotine methyl ether on reduction with sodium borohydride. From these data as well as from the analyses of NMR. and IR. spectra the complete relative stereochemistry of talbotine could be derived. Application of the Horeau method to the nitrogen atom b of the methyl ether 3 on the one hand and to the hydroxyl group on C17 in N(b)-methyl-19, 20-dihydrotalbotine ( 8 ) on the other hand gives consistent results and establishes S configuration of centre 15.  相似文献   
103.
Fluorescent probes that can selectively detect tumour lesions have great potential for fluorescence imaging-guided surgery. Here, we established a library-based approach for efficient screening of probes for tumour-selective imaging based on discovery of biomarker enzymes. We constructed a combinatorial fluorescent probe library for aminopeptidases and proteases, which is composed of 380 probes with various substrate moieties. Using this probe library, we performed lysate-based in vitro screening and/or direct imaging-based ex vivo screening of freshly resected clinical specimens from lung or gastric cancer patients, and found promising probes for tumour-selective visualization. Further, we identified two target enzymes as novel biomarker enzymes for discriminating between tumour and non-tumour tissues. This library-based approach is expected to be an efficient tool to develop tumour-imaging probes and to discover new biomarker enzyme activities for various tumours and other diseases.

Efficient methodology to develop tumor-imaging fluorescent probes based on screening with our newly constructed probe library for aminopeptidase/protease (380 probes) and clinical samples has been established.  相似文献   
104.
Fluorescence imaging is a powerful tool for the visualization of biological molecules in living cells, tissue slices, and whole bodies, and is important for elucidating biological phenomena. Furthermore, zinc (Zn2+) is the second most abundant heavy metal ion in the human body after iron, and detection of chelatable Zn2+ in biological studies has attracted much attention. Herein, we present a novel, highly sensitive off–on fluorescent chemosensor for Zn2+ by using the internal charge transfer (ICT) mechanism. The rationale of our approach to highly sensitive sensor molecules is as follows. If fluorescence can be completely quenched in the absence of Zn2+, chemosensors would offer a better signal‐to‐noise ratio. However, it is difficult to quench the fluorescence completely before Zn2+ binding, and most sensor molecules still show very weak fluorescence in the absence of Zn2+. But even though the sensor shows a weak fluorescence in the absence of Zn2+, this fluorescence can be further suppressed by selecting an excitation wavelength that is barely absorbed by the Zn2+‐free sensor molecule. Focusing on careful control of ICT within the 4‐amino‐1,8‐naphthalimide dye platform, we designed and synthesized a new chemosensor ( 1 ) that shows a pronounced fluorescence enhancement with a blueshift in the absorption spectrum upon addition of Zn2+. The usefulness of 1 for monitoring Zn2+ changes was confirmed in living HeLa cells. There have been several reports on 4‐amino‐1,8‐naphthalimide‐based fluorescent sensor molecules. However, 1 is the first Zn2+‐sensitive off–on fluorescent sensor molecule that employs the ICT mechanism; most off–on sensor molecules for Zn2+ employ the photoinduced electron transfer (PeT) mechanism.  相似文献   
105.
The prevalence of type 2 diabetes is increasing dramatically throughout the world. Recently, dipeptidyl peptidase 4 (DPP4) was identified as a potential antidiabetes target. Many DPP4 inhibitors, such as sitagliptin and vildagliptin, have been developed and marketed, but superior therapeutic agents are still required. Therefore, we have developed new methodology for screening of DPP4 inhibitors. Absorption-based measurements with para-nitroaniline or fluorescence-based measurements with the coumarin derivative 7-amino-4-methylcoumarin are often used for the screening of protease inhibitors, including DPP4 inhibitors, but these strategies are not sufficiently sensitive because of interfering background absorption and fluorescence, thus giving rise to many false-positive and false-negative results. Therefore, we have designed and synthesised a novel DPP4 probe (Gly-Pro-BCD-Tb; Gly=glycine, Pro=proline, andBCD defines the backbone of the probe comprising an aniline derivative as on/off switch, a 7-amino-4-methyl-2(1H)-quinolinone (cs-124) as antenna moiety, and a diethylenetriamine-N,N,N',N',N'-pentaacetic acid (DTPA) as chelator moiety, Tb=terbium) for time-resolved fluorescence (TRF) measurements. TRF measurements with Gly-Pro-BCD-Tb showed high sensitivity and reliability in the inhibitory assay relative to Gly-Pro-MCA (MCA=4-methylcoumarin-7-amide), a conventional fluorescence probe for DPP4. Further, we employed our probe for high-throughput DPP4 inhibitor screening with 3841 randomly selected compounds and found that epibestatin, an epimer of bestatin (a well-known anticancer drug and general aminopeptidase inhibitor), showed dose-dependent DPP4 inhibitory activity. Interestingly, bestatin did not exhibit DPP4 inhibitory activity. We believe that this screening system will be useful for the discovery of DPP4 inhibitors with novel structural scaffolds.  相似文献   
106.
Lanthanide complexes have unique chemical characteristics compared with typical organic complexes, and have recently attracted much interest because of the expanding need for new bioanalytical sensors. For example, magnetic resonance imaging (MRI) permits noninvasive three-dimensional imaging inside opaque organisms, and gadolinium ion (Gd(3+)) complexes have become important tools as MRI contrast agents. However, most of them are nonspecific, and report solely on anatomy. Therefore, responsive MRI contrast agents, so-called "smart" MRI contrast agents whose ability to relax water protons is greatly enhanced by recognition of a particular biomolecule, have great potential for elucidating biological phenomena. On the other hand, lanthanide complexes such as europium (Eu(3+)) and terbium (Tb(3+)) complexes have excellent luminescence properties for biological applications, i.e., long luminescence lifetime of the order of milliseconds and a large Stoke's shift of >200 nm. Their long-lived luminescence is especially suitable for time-resolved measurements, because the interference from short-lived background fluorescence and scattered light rapidly decays to a negligible level after a pulse of excitation light is applied, and the emitted light can be collected after an appropriate delay time. These luminescent lanthanide complexes have already found commercial use as highly sensitive luminescent probes in heterogeneous and homogeneous assays. This paper reviews our research on the design and synthesis of responsive lanthanide-based MRI and luminescent probes for advanced bioimaging.  相似文献   
107.
108.
An Erratum has been published for this article in Applied Organometallic Chemistry 2001; 15(4):317. The preparation of polyzirconoxanes (EG‐PZO) was investigated by a one‐pot reaction of zirconium oxychloride octahydrate with ethylene glycol. Triethylamine was added dropwise into a mixture of zirconium oxychloride octahydrate, ethylene glycol and methanol to give EG‐PZO with a good spinnability and stability to self‐condensation. The 1H NMR spectrum, IR spectrum, analytical data and expanded X‐ray absorption fine‐structure analysis indicated that EG‐PZO consisted of Zr < (OH)2 > Zr linkages as a main chain with pendant 2‐hydroxyethoxy groups, chloro groups and water. The 3Y2O3–97ZrO2 ceramic fibers were prepared by sintering the precursor fibers after the addition of <?tw=97%>Y(acac)3 (acac = acetoacetate) to EG‐PZO. Copy‐<?tw>­right © 2000 John Wiley & Sons, Ltd.  相似文献   
109.
Microbial degradation of a tetramethylarsonium salt during incubation at 25°C was investigated under both aerobic and anaerobic conditions. Two media (1/5 ZoBell 2216E and inorganic salt medium), added with the sediments or suspended substances as the sources of the microorganisms, were used. Degradation of the tetramethylarsonium salt occurred only in the ZoBell medium: under anaerobic conditions, trimethylarsine oxide and dimethylarsinic acid were derived with the sediments, and dimethylarsinic acid with the suspended substances, the salt degrading more rapidly with the former than with the latter. Small amounts of two metabolites, trimethylarsine oxide and inorganic arsenic(V), was also derived in the aerobically incubated ZoBell medium added with the suspended substances. This result means that the tetramethylarsonium salt is degraded to inorganic arsenic, which is the starting material for arsenic circulation in marine ecosystems, via trimethylarsine oxide and dimethylarsinic acid.  相似文献   
110.
Arsenic compounds were extracted with chloroform/methanol/water from tissues of marine animals (four carnivores, five herbivores, five plankton feeders). The extracts were purified by cation and anion exchange chromatography. Arsenobetaine [(CH3)3As+CH2COO?], dimethylarsinic acid [(CH3)2AsOOH], trimethylarsine oxide [(CH3)3AsO] and arsenite, arsenate, and methylarsonic acid [(CH3)AsO(OH)2] as a group with the same retention time were identified by high-pressure liquid chromatography. Arsenic was determined in the collected fractions by graphite furnace atomic absorption spectrometry. Arsenobetaine found in all the animals was almost always the most abundant arsenic compound in the extracts. These results show that arsenobetaine is present in marine animals independently of their feeding habits and trophic levels. Arsenobetaine-containing growth media (ZoBell 2216E; solution of inorganic salts) were mixed with coastal marine sediments as the source of microorganisms. Arsenobetaine was converted in both media to trimethylarsine oxide and trimethylarsine oxide was converted to arsenite, arsenate or methylarsonic acid but not to dimethylarsinic acid. The conversion rates in the inorganic medium were faster than in the ZoBell medium. Two dominant bacterial strains isolated from the inorganic medium and identified as members of the Vibro–Aeromonas group were incapable of degrading arsenobetaine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号